Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2018, Vol. 12 Issue (4) : 387-411    https://doi.org/10.1007/s11684-018-0646-8
REVIEW
Intracellular and extracellular TGF-β signaling in cancer: some recent topics
Kohei Miyazono(), Yoko Katsuno, Daizo Koinuma, Shogo Ehata, Masato Morikawa
Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
 Download: PDF(643 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Transforming growth factor (TGF)-β regulates a wide variety of cellular responses, including cell growth arrest, apoptosis, cell differentiation, motility, invasion, extracellular matrix production, tissue fibrosis, angiogenesis, and immune function. Although tumor-suppressive roles of TGF-β have been extensively studied and well-characterized in many cancers, especially at early stages, accumulating evidence has revealed the critical roles of TGF-β as a pro-tumorigenic factor in various types of cancer. This review will focus on recent findings regarding epithelial-mesenchymal transition (EMT) induced by TGF-β, in relation to crosstalk with some other signaling pathways, and the roles of TGF-β in lung and pancreatic cancers, in which TGF-β has been shown to be involved in cancer progression. Recent findings also strongly suggested that targeting TGF-β signaling using specific inhibitors may be useful for the treatment of some cancers. TGF-β plays a pivotal role in the differentiation and function of regulatory T cells (Tregs). TGF-β is produced as latent high molecular weight complexes, and the latent TGF-β complex expressed on the surface of Tregs contains glycoprotein A repetitions predominant (GARP, also known as leucine-rich repeat containing 32 or LRRC32). Inhibition of the TGF-β activities through regulation of the latent TGF-β complex activation will be discussed.

Keywords TGF-β      EMT      lung cancer      pancreatic cancer      latent form      immune function      GARP     
Corresponding Author(s): Kohei Miyazono   
Just Accepted Date: 25 June 2018   Online First Date: 25 July 2018    Issue Date: 03 September 2018
 Cite this article:   
Kohei Miyazono,Yoko Katsuno,Daizo Koinuma, et al. Intracellular and extracellular TGF-β signaling in cancer: some recent topics[J]. Front. Med., 2018, 12(4): 387-411.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-018-0646-8
https://academic.hep.com.cn/fmd/EN/Y2018/V12/I4/387
Fig.1  Intracellular signal transduction by TGF-β. Upon binding of TGF-β ligands to the receptors, the Smad pathway involving Smad2 and/or 3 (Smad2/3) and Smad4 is activated (middle). The TGF-β-Smad pathway regulates the expression of various target genes, and EMT transcription factors induced by TGF-β signaling are shown. TGF-β also activates non-Smad pathways, including the TRAF6 and/or 4 (TRAF6/4)-TAK1-JNK and/or p38 pathway, PI3K-Akt-mTOR pathway, and Ras-Erk1 and/or 2 (Erk1/2) pathway (left). In addition, the growth factor-RTK pathway modulates the TGF-β signaling pathway (right). Ub, ubiquitin; P, phosphorylation.
Fig.2  Regulation of cancer metastasis by TGF-β and analyses by whole-body tissue-clearing. TGF-β acts on epithelial cells and accelerates the invasion of cells through induction of EMT. After intravasation, TGF-β stimulates cell adhesion and survival at distant organs, and facilitates extravasation. Then, cancer cells may undergo mesenchymal-epithelial transition (MET), a reverse process of EMT, and form metastatic foci, where the cancer cells often express an epithelial cell marker E-cadherin. (A) Whole lung of mice treated with the CUBIC tissue-clearing reagents. Blue dotted line indicates the outline of the lung. (B, C) Mice were injected with A549 lung adenocarcinoma cells pretreated with TGF-β through tail vein. Cancer cells expressing mCherry (shown in red) were visualized after 1 hour (B) and 14 days (C) after injection of cells into mice. Cell nuclei were visualized by RedDot2 (shown in blue). (D) Immunostaining of lung tissue of the mouse injected with the TGF-β-treated A549 cells. Cancer cells in the metastatic foci are positively stained by anti-E-cadherin antibody. (Courtesy of Drs. Shimpei I. Kubota, Kei Takahashi, and Hiroki R. Ueda.) See Kubota et al. [113].
Fig.3  Roles of TGF-β signaling in lung adenocarcinoma and small cell lung carcinoma. (A) TGF-β signaling in lung adenocarcinoma. TGF-β signaling induces the expression of SNAI1 and SNAI2 genes, encoding Snail and Slug, respectively, and regulates the expression of other target genes involved in progression of cancer. NKX2-1/TTF-1 antagonizes the effects of TGF-β-Smad signaling. (B) TGF-β signaling in small cell lung carcinoma (SCLC). TGF-β inhibits the expression of ASCL1/ASH1 through the Smad signaling pathway. Because ASCL1 induces cell survival, TGF-β signaling attenuates the induction of cell survival by ASCL1. In SCLC cells, expression of TβRII (encoded by the TGFBR2 gene) is downregulated through an epigenetic mechanism by an increase in the EZH2 expression. Thus, TGF-β signaling is suppressed in SCLC cells, leading to enhanced cell survival in SCLC cells.
Fig.4  Roles of TGF-β signaling in pancreatic carcinoma. (A) Multistep progression of pancreatic carcinoma. Genes involved in progression of pancreatic carcinoma and the frequencies of abnormalities of these genes are shown [239]. Red, oncogene; blue, tumor-suppressive genes. (B) Tumor-suppressive and pro-tumorigenic activities of TGF-β during the development of pancreatic carcinoma.
Fig.5  Structure of pre-pro-TGF-β1 and latent forms of TGF-β. (A) Structure of pre-pro-TGF-β1. Red arrows, proteolytic processing sites; blue asterisks, cysteine residues, which form intramolecular disulfide bridges; red asterisks, cysteine residues, which form intermolecular disulfide bridges; green asterisk, cysteine residue, which forms a disulfide bridge with LTBPs or GARP; RGD, integrin recognition sequence. (B) Small latent TGF-β complex (SLC). TGF-β is produced as a latent form, consisting of the dimeric LAP proteins, which are non-covalently associated with the dimeric mature TGF-β. The RGD integrin recognition sequence is present in TGF-β1 and β3, but not in β2. Latent TGF-β is activated by various mechanisms; among those, mechanisms of activation by integrins have been best-characterized (see text). (C) Structures of the large latent TGF-β complexes (LLCs). SLCs are bound to LTBPs (LTBP-1, 3, and 4) or GARP. LTBPs are comprised of multiple EGF-like domains and 8-cysteine domains. The latent TGF-β complexes with LTBPs are released from the producer cells. LTBPs are associated with ECM proteins, which are involved in activation of the latent TGF-β. GARP is a transmembrane protein with a horseshoe-like structure. The latent TGF-β complex with GARP is thus anchored to the cell surface. The extracellular domain of GARP is comprised of multiple leucine-rich repeats.
1 Morikawa M, Derynck R, Miyazono K. TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol 2016; 8(5): a021873
https://doi.org/10.1101/cshperspect.a021873 pmid: 27141051
2 Shilling SH, Hjelmeland AB, Rich JN, Wang XF. TGF-β: multipotential cytokine. In: Derynck R, Miyazono K, eds. The TGF-β Family. New York: Cold Spring Harbor Laboratory Press, 2007: 49–77
3 Roberts AB, Anzano MA, Lamb LC, Smith JM, Sporn MB. New class of transforming growth factors potentiated by epidermal growth factor: isolation from non-neoplastic tissues. Proc Natl Acad Sci USA 1981; 78(9): 5339–5343
https://doi.org/10.1073/pnas.78.9.5339 pmid: 6975480
4 Moses HL, Branum EL, Proper JA, Robinson RA. Transforming growth factor production by chemically transformed cells. Cancer Res 1981; 41(7): 2842–2848
pmid: 6265069
5 Moses HL, Roberts AB, Derynck R. The discovery and early days of TGF-β: a historical perspective. Cold Spring Harb Perspect Biol 2016; 8(7): a021865
https://doi.org/10.1101/cshperspect.a021865 pmid: 27328871
6 Miettinen PJ, Ebner R, Lopez AR, Derynck R. TGF-β induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol 1994; 127(6 Pt 2): 2021–2036
https://doi.org/10.1083/jcb.127.6.2021 pmid: 7806579
7 Bierie B, Moses HL. Tumour microenvironment: TGFβ: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 2006; 6(7): 506–520
https://doi.org/10.1038/nrc1926 pmid: 16794634
8 Massagué J. TGFβ in cancer. Cell 2008; 134(2): 215–230
https://doi.org/10.1016/j.cell.2008.07.001 pmid: 18662538
9 Seoane J, Gomis RR. TGF-β family signaling in tumor suppression and cancer progression. Cold Spring Harb Perspect Biol 2017; 9(12): a022277
https://doi.org/10.1101/cshperspect.a022277 pmid: 28246180
10 Colak S, ten Dijke P. Targeting TGF-β signaling in cancer. Trends Cancer 2017; 3(1): 56–71
https://doi.org/10.1016/j.trecan.2016.11.008 pmid: 28718426
11 Grady WM, Markowitz SD. TGF-β signaling pathway in tumor suppression. In: Derynck R, Miyazono K, eds. The TGF-β Family. New York: Cold Spring Harbor Laboratory Press, 2007: 889–937
12 Roberts AB, Wakefield LM. The two faces of transforming growth factor β in carcinogenesis. Proc Natl Acad Sci USA 2003; 100(15): 8621–8623
https://doi.org/10.1073/pnas.1633291100 pmid: 12861075
13 Davis H, Raja E, Miyazono K, Tsubakihara Y, Moustakas A. Mechanisms of action of bone morphogenetic proteins in cancer. Cytokine Growth Factor Rev 2016; 27: 81–92
https://doi.org/10.1016/j.cytogfr.2015.11.009 pmid: 26678814
14 Wakefield LM, Hill CS. Beyond TGFβ: roles of other TGFβ superfamily members in cancer. Nat Rev Cancer 2013; 13(5): 328–341
https://doi.org/10.1038/nrc3500 pmid: 23612460
15 Robertson IB, Rifkin DB. Regulation of the bioavailability of TGF-β and TGF-β-related proteins. Cold Spring Harb Perspect Biol 2016; 8(6): a021907
https://doi.org/10.1101/cshperspect.a021907 pmid: 27252363
16 Stockis J, Colau D, Coulie PG, Lucas S. Membrane protein GARP is a receptor for latent TGF-β on the surface of activated human Treg. Eur J Immunol 2009; 39(12): 3315–3322
https://doi.org/10.1002/eji.200939684 pmid: 19750484
17 Tran DQ, Andersson J, Wang R, Ramsey H, Unutmaz D, Shevach EM. GARP (LRRC32) is essential for the surface expression of latent TGF-β on platelets and activated FOXP3+ regulatory T cells. Proc Natl Acad Sci USA 2009; 106(32): 13445–13450
https://doi.org/10.1073/pnas.0901944106 pmid: 19651619
18 Heldin CH, Miyazono K, ten Dijke P. TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 1997; 390(6659): 465–471
https://doi.org/10.1038/37284 pmid: 9393997
19 Feng XH, Derynck R. Specificity and versatility in TGF-β signaling through Smads. Annu Rev Cell Dev Biol 2005; 21(1): 659–693
https://doi.org/10.1146/annurev.cellbio.21.022404.142018 pmid: 16212511
20 Yan X, Xiong X, Chen YG. Feedback regulation of TGF-β signaling. Acta Biochim Biophys Sin (Shanghai) 2018; 50(1): 37–50
https://doi.org/10.1093/abbs/gmx129 pmid: 29228156
21 Miyazawa K, Miyazono K. Regulation of TGF-β family signaling by inhibitory Smads. Cold Spring Harb Perspect Biol 2017; 9(3): a022095
https://doi.org/10.1101/cshperspect.a022095 pmid: 27920040
22 Zhang YE. Non-Smad signaling pathways of the TGF-β family. Cold Spring Harb Perspect Biol 2017; 9(2): a022129
https://doi.org/10.1101/cshperspect.a022129 pmid: 27864313
23 Lee MK, Pardoux C, Hall MC, Lee PS, Warburton D, Qing J, Smith SM, Derynck R. TGF-β activates Erk MAP kinase signalling through direct phosphorylation of ShcA. EMBO J 2007; 26(17): 3957–3967
https://doi.org/10.1038/sj.emboj.7601818 pmid: 17673906
24 Sorrentino A, Thakur N, Grimsby S, Marcusson A, von Bulow V, Schuster N, Zhang S, Heldin CH, Landström M. The type I TGF-β receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat Cell Biol 2008; 10(10): 1199–1207
https://doi.org/10.1038/ncb1780 pmid: 18758450
25 Yamashita M, Fatyol K, Jin C, Wang X, Liu Z, Zhang YE. TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-β. Mol Cell 2008; 31(6): 918–924
https://doi.org/10.1016/j.molcel.2008.09.002 pmid: 18922473
26 Zhang L, Zhou F, García de Vinuesa A, de Kruijf EM, Mesker WE, Hui L, Drabsch Y, Li Y, Bauer A, Rousseau A, Sheppard KA, Mickanin C, Kuppen PJ, Lu CX, ten Dijke P. TRAF4 promotes TGF-β receptor signaling and drives breast cancer metastasis. Mol Cell 2013; 51(5): 559–572
https://doi.org/10.1016/j.molcel.2013.07.014 pmid: 23973329
27 Mu Y, Sundar R, Thakur N, Ekman M, Gudey SK, Yakymovych M, Hermansson A, Dimitriou H, Bengoechea-Alonso MT, Ericsson J, Heldin CH, Landström M. TRAF6 ubiquitinates TGFβ type I receptor to promote its cleavage and nuclear translocation in cancer. Nat Commun 2011; 2(1): 330
https://doi.org/10.1038/ncomms1332 pmid: 21629263
28 Gudey SK, Sundar R, Mu Y, Wallenius A, Zang G, Bergh A, Heldin CH, Landström M. TRAF6 stimulates the tumor-promoting effects of TGFβ type I receptor through polyubiquitination and activation of presenilin 1. Sci Signal 2014; 7(307): ra2
https://doi.org/10.1126/scisignal.2004207 pmid: 24399296
29 Deheuninck J, Luo K. Ski and SnoN, potent negative regulators of TGF-β signaling. Cell Res 2009; 19(1): 47–57
https://doi.org/10.1038/cr.2008.324 pmid: 19114989
30 Xu P, Lin X, Feng XH. Posttranslational regulation of Smads. Cold Spring Harb Perspect Biol 2016; 8(12): a022087
https://doi.org/10.1101/cshperspect.a022087 pmid: 27908935
31 Morikawa M, Koinuma D, Miyazono K, Heldin CH. Genome-wide mechanisms of Smad binding. Oncogene 2013; 32(13): 1609–1615
https://doi.org/10.1038/onc.2012.191 pmid: 22614010
32 Hata A, Lieberman J. Dysregulation of microRNA biogenesis and gene silencing in cancer. Sci Signal 2015; 8(368): re3
https://doi.org/10.1126/scisignal.2005825 pmid: 25783160
33 Wang J, Shao N, Ding X, Tan B, Song Q, Wang N, Jia Y, Ling H, Cheng Y. Crosstalk between transforming growth factor-β signaling pathway and long non-coding RNAs in cancer. Cancer Lett 2016; 370(2): 296–301
https://doi.org/10.1016/j.canlet.2015.11.007 pmid: 26577807
34 Siegel PM, Massagué J. Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer. Nat Rev Cancer 2003; 3(11): 807–821
https://doi.org/10.1038/nrc1208 pmid: 14557817
35 Zhang Y, Alexander PB, Wang XF. TGF-β family signaling in the control of cell proliferation and survival. Cold Spring Harb Perspect Biol 2017; 9(4): a022145
https://doi.org/10.1101/cshperspect.a022145 pmid: 27920038
36 Sánchez-Capelo A. Dual role for TGF-β1 in apoptosis. Cytokine Growth Factor Rev 2005; 16(1): 15–34
https://doi.org/10.1016/j.cytogfr.2004.11.002 pmid: 15733830
37 Derynck R, Muthusamy BP, Saeteurn KY. Signaling pathway cooperation in TGF-β-induced epithelial-mesenchymal transition. Curr Opin Cell Biol 2014; 31: 56–66
https://doi.org/10.1016/j.ceb.2014.09.001 pmid: 25240174
38 Nieto MA, Huang RY, Jackson RA, Thiery JP. EMT: 2016. Cell 2016; 166(1): 21–45
https://doi.org/10.1016/j.cell.2016.06.028 pmid: 27368099
39 Moustakas A, Heldin CH. Mechanisms of TGFβ-induced epithelial-mesenchymal transition. J Clin Med 2016; 5(7): 63
https://doi.org/10.3390/jcm5070063 pmid: 27367735
40 Sakaki-Yumoto M, Katsuno Y, Derynck R. TGF-β family signaling in stem cells. Biochim Biophys Acta 2013; 1830(2): 2280–2296
https://doi.org/10.1016/j.bbagen.2012.08.008 pmid: 22959078
41 Ikushima H, Miyazono K. TGFβ signalling: a complex web in cancer progression. Nat Rev Cancer 2010; 10(6): 415–424
https://doi.org/10.1038/nrc2853 pmid: 20495575
42 Caja L, Kahata K, Moustakas A. Context-dependent action of transforming growth factor β family members on normal and cancer stem cells. Curr Pharm Des 2012; 18(27): 4072–4086
https://doi.org/10.2174/138161212802430459 pmid: 22630079
43 Katsuno Y, Lamouille S, Derynck R. TGF-β signaling and epithelial-mesenchymal transition in cancer progression. Curr Opin Oncol 2013; 25(1): 76–84
https://doi.org/10.1097/CCO.0b013e32835b6371 pmid: 23197193
44 Shipitsin M, Campbell LL, Argani P, Weremowicz S, Bloushtain-Qimron N, Yao J, Nikolskaya T, Serebryiskaya T, Beroukhim R, Hu M, Halushka MK, Sukumar S, Parker LM, Anderson KS, Harris LN, Garber JE, Richardson AL, Schnitt SJ, Nikolsky Y, Gelman RS, Polyak K. Molecular definition of breast tumor heterogeneity. Cancer Cell 2007; 11(3): 259–273
https://doi.org/10.1016/j.ccr.2007.01.013 pmid: 17349583
45 Böttinger EP. TGF-β and fibrosis. In: Derynck R, Miyazono K, eds. The TGF-β Family. New York: Cold Spring Harbor Laboratory Press, 2007: 989–1021
46 Pickup M, Novitskiy S, Moses HL. The roles of TGFβ in the tumour microenvironment. Nat Rev Cancer 2013; 13(11): 788–799
https://doi.org/10.1038/nrc3603 pmid: 24132110
47 Kim KK, Sheppard D, Chapman HA. TGF-β1 signaling and tissue fibrosis. Cold Spring Harb Perspect Biol 2018; 10(4): a022293
https://doi.org/10.1101/cshperspect.a022293 pmid: 28432134
48 Goumans MJ, ten Dijke P. TGF-β signaling in control of cardiovascular function. Cold Spring Harb Perspect Biol 2018; 10(2): a022210
https://doi.org/10.1101/cshperspect.a022210 pmid: 28348036
49 Komuro A, Yashiro M, Iwata C, Morishita Y, Johansson E, Matsumoto Y, Watanabe A, Aburatani H, Miyoshi H, Kiyono K, Shirai YT, Suzuki HI, Hirakawa K, Kano MR, Miyazono K. Diffuse-type gastric carcinoma: progression, angiogenesis, and transforming growth factor β signaling. J Natl Cancer Inst 2009; 101(8): 592–604
https://doi.org/10.1093/jnci/djp058 pmid: 19351925
50 Watabe T, Nishihara A, Mishima K, Yamashita J, Shimizu K, Miyazawa K, Nishikawa S, Miyazono K. TGF-β receptor kinase inhibitor enhances growth and integrity of embryonic stem cell-derived endothelial cells. J Cell Biol 2003; 163(6): 1303–1311
https://doi.org/10.1083/jcb.200305147 pmid: 14676305
51 Yoshimatsu Y, Watabe T. Roles of TGF-β signals in endothelial-mesenchymal transition during cardiac fibrosis. Int J Inflam 2011; 2011: 724080
52 Padua D, Zhang XH, Wang Q, Nadal C, Gerald WL, Gomis RR, Massagué J. TGFβ primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 2008; 133(1): 66–77
https://doi.org/10.1016/j.cell.2008.01.046 pmid: 18394990
53 Yoshimura A, Wakabayashi Y, Mori T. Cellular and molecular basis for the regulation of inflammation by TGF-β. J Biochem 2010; 147(6): 781–792
https://doi.org/10.1093/jb/mvq043 pmid: 20410014
54 Li MO, Flavell RA. TGF-β: a master of all T cell trades. Cell 2008; 134(3): 392–404
https://doi.org/10.1016/j.cell.2008.07.025 pmid: 18692464
55 Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limón P. The polarization of immune cells in the tumour environment by TGFβ. Nat Rev Immunol 2010; 10(8): 554–567
https://doi.org/10.1038/nri2808 pmid: 20616810
56 Sanjabi S, Oh SA, Li MO. Regulation of the immune response by TGF-β: from conception to autoimmunity and infection. Cold Spring Harb Perspect Biol 2017; 9(6): a022236
https://doi.org/10.1101/cshperspect.a022236 pmid: 28108486
57 Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, Allen R, Sidman C, Proetzel G, Calvin D, Annunziata N, Doetschman T. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature 1992; 359(6397): 693–699
https://doi.org/10.1038/359693a0 pmid: 1436033
58 Kulkarni AB, Huh CG, Becker D, Geiser A, Lyght M, Flanders KC, Roberts AB, Sporn MB, Ward JM, Karlsson S. Transforming growth factor β1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci USA 1993; 90(2): 770–774
https://doi.org/10.1073/pnas.90.2.770 pmid: 8421714
59 Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, McGrady G, Wahl SM. Conversion of peripheral CD4+CD25− naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J Exp Med 2003; 198(12): 1875–1886
https://doi.org/10.1084/jem.20030152 pmid: 14676299
60 Liu Y, Zhang P, Li J, Kulkarni AB, Perruche S, Chen W. A critical function for TGF-β signaling in the development of natural CD4+CD25+Foxp3+ regulatory T cells. Nat Immunol 2008; 9(6): 632–640
https://doi.org/10.1038/ni.1607 pmid: 18438410
61 Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006; 24(2): 179–189
https://doi.org/10.1016/j.immuni.2006.01.001 pmid: 16473830
62 Korn T, Bettelli E, Gao W, Awasthi A, Jäger A, Strom TB, Oukka M, Kuchroo VK. IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells. Nature 2007; 448(7152): 484–487
https://doi.org/10.1038/nature05970 pmid: 17581588
63 Laouar Y, Sutterwala FS, Gorelik L, Flavell RA. Transforming growth factor-β controls T helper type 1 cell development through regulation of natural killer cell interferon-γ. Nat Immunol 2005; 6(6): 600–607
https://doi.org/10.1038/ni1197 pmid: 15852008
64 Miyazono K, Ehata S, Koinuma D. Tumor-promoting functions of transforming growth factor-β in progression of cancer. Ups J Med Sci 2012; 117(2): 143–152
https://doi.org/10.3109/03009734.2011.638729 pmid: 22111550
65 Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 2014; 15(3): 178–196
https://doi.org/10.1038/nrm3758 pmid: 24556840
66 Brabletz S, Brabletz T. The ZEB/miR-200 feedback loop—a motor of cellular plasticity in development and cancer? EMBO Rep 2010; 11(9): 670–677
https://doi.org/10.1038/embor.2010.117 pmid: 20706219
67 Lamouille S, Subramanyam D, Blelloch R, Derynck R. Regulation of epithelial-mesenchymal and mesenchymal-epithelial transitions by microRNAs. Curr Opin Cell Biol 2013; 25(2): 200–207
https://doi.org/10.1016/j.ceb.2013.01.008 pmid: 23434068
68 Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008; 10(5): 593–601
https://doi.org/10.1038/ncb1722 pmid: 18376396
69 Gregory PA, Bracken CP, Smith E, Bert AG, Wright JA, Roslan S, Morris M, Wyatt L, Farshid G, Lim YY, Lindeman GJ, Shannon MF, Drew PA, Khew-Goodall Y, Goodall GJ. An autocrine TGF-β/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Mol Biol Cell 2011; 22(10): 1686–1698
https://doi.org/10.1091/mbc.e11-02-0103 pmid: 21411626
70 Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 2008; 9(6): 582–589
https://doi.org/10.1038/embor.2008.74 pmid: 18483486
71 Park SM, Gaur AB, Lengyel E, Peter ME. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 2008; 22(7): 894–907
https://doi.org/10.1101/gad.1640608 pmid: 18381893
72 Siemens H, Jackstadt R, Hünten S, Kaller M, Menssen A, Götz U, Hermeking H. miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle 2011; 10(24): 4256–4271
https://doi.org/10.4161/cc.10.24.18552 pmid: 22134354
73 Lu M, Jolly MK, Levine H, Onuchic JN, Ben-Jacob E. MicroRNA-based regulation of epithelial-hybrid-mesenchymal fate determination. Proc Natl Acad Sci USA 2013; 110(45): 18144–18149
https://doi.org/10.1073/pnas.1318192110 pmid: 24154725
74 Tian XJ, Zhang H, Xing J. Coupled reversible and irreversible bistable switches underlying TGFβ-induced epithelial to mesenchymal transition. Biophys J 2013; 105(4): 1079–1089
https://doi.org/10.1016/j.bpj.2013.07.011 pmid: 23972859
75 Zhang J, Tian XJ, Zhang H, Teng Y, Li R, Bai F, Elankumaran S, Xing J. TGF-β-induced epithelial-to-mesenchymal transition proceeds through stepwise activation of multiple feedback loops. Sci Signal 2014; 7(345): ra91
https://doi.org/10.1126/scisignal.2005304 pmid: 25270257
76 Yuan JH, Yang F, Wang F, Ma JZ, Guo YJ, Tao QF, Liu F, Pan W, Wang TT, Zhou CC, Wang SB, Wang YZ, Yang Y, Yang N, Zhou WP, Yang GS, Sun SH. A long noncoding RNA activated by TGF-β promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell 2014; 25(5): 666–681
https://doi.org/10.1016/j.ccr.2014.03.010 pmid: 24768205
77 Richards EJ, Zhang G, Li ZP, Permuth-Wey J, Challa S, Li Y, Kong W, Dan S, Bui MM, Coppola D, Mao WM, Sellers TA, Cheng JQ. Long non-coding RNAs (lncRNA) regulated by transforming growth factor (TGF) β: lncRNA-hit-mediated TGFβ-induced epithelial to mesenchymal transition in mammary epithelia. J Biol Chem 2015; 290(11): 6857–6867
https://doi.org/10.1074/jbc.M114.610915 pmid: 25605728
78 Terashima M, Tange S, Ishimura A, Suzuki T. MEG3 long noncoding RNA contributes to the epigenetic regulation of epithelial-mesenchymal transition in lung cancer cell lines. J Biol Chem 2017; 292(1): 82–99
https://doi.org/10.1074/jbc.M116.750950 pmid: 27852821
79 Katsura A, Suzuki HI, Ueno T, Mihira H, Yamazaki T, Yasuda T, Watabe T, Mano H, Yamada Y, Miyazono K. MicroRNA-31 is a positive modulator of endothelial-mesenchymal transition and associated secretory phenotype induced by TGF-β. Genes Cells 2016; 21(1): 99–116
https://doi.org/10.1111/gtc.12323 pmid: 26663584
80 Lamouille S, Derynck R. Cell size and invasion in TGF-β-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway. J Cell Biol 2007; 178(3): 437–451
https://doi.org/10.1083/jcb.200611146 pmid: 17646396
81 Pon YL, Zhou HY, Cheung AN, Ngan HY, Wong AS. p70 S6 kinase promotes epithelial to mesenchymal transition through Snail induction in ovarian cancer cells. Cancer Res 2008; 68(16): 6524–6532
https://doi.org/10.1158/0008-5472.CAN-07-6302 pmid: 18701475
82 Gulhati P, Bowen KA, Liu J, Stevens PD, Rychahou PG, Chen M, Lee EY, Weiss HL, O’Connor KL, Gao T, Evers BM. mTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. Cancer Res 2011; 71(9): 3246–3256
https://doi.org/10.1158/0008-5472.CAN-10-4058 pmid: 21430067
83 Lamouille S, Connolly E, Smyth JW, Akhurst RJ, Derynck R. TGF-β-induced activation of mTOR complex 2 drives epithelial-mesenchymal transition and cell invasion. J Cell Sci 2012; 125(Pt 5): 1259–1273
https://doi.org/10.1242/jcs.095299 pmid: 22399812
84 Xie L, Law BK, Chytil AM, Brown KA, Aakre ME, Moses HL. Activation of the Erk pathway is required for TGF-β1-induced EMT in vitro. Neoplasia 2004; 6(5): 603–610
https://doi.org/10.1593/neo.04241 pmid: 15548370
85 Buonato JM, Lazzara MJ. ERK1/2 blockade prevents epithelial-mesenchymal transition in lung cancer cells and promotes their sensitivity to EGFR inhibition. Cancer Res 2014; 74(1): 309–319
https://doi.org/10.1158/0008-5472.CAN-12-4721 pmid: 24108744
86 Amatangelo MD, Goodyear S, Varma D, Stearns ME. c-Myc expression and MEK1-induced Erk2 nuclear localization are required for TGF-β induced epithelial-mesenchymal transition and invasion in prostate cancer. Carcinogenesis 2012; 33(10): 1965–1975
https://doi.org/10.1093/carcin/bgs227 pmid: 22791812
87 Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y, Wrana JL. Regulation of the polarity protein Par6 by TGFβ receptors controls epithelial cell plasticity. Science 2005; 307(5715): 1603–1609
https://doi.org/10.1126/science.1105718 pmid: 15761148
88 Gunaratne A, Thai BL, Di Guglielmo GM. Atypical protein kinase C phosphorylates Par6 and facilitates transforming growth factor β-induced epithelial-to-mesenchymal transition. Mol Cell Biol 2013; 33(5): 874–886
https://doi.org/10.1128/MCB.00837-12 pmid: 23249950
89 Mihira H, Suzuki HI, Akatsu Y, Yoshimatsu Y, Igarashi T, Miyazono K, Watabe T. TGF-β-induced mesenchymal transition of MS-1 endothelial cells requires Smad-dependent cooperative activation of Rho signals and MRTF-A. J Biochem 2012; 151(2): 145–156
https://doi.org/10.1093/jb/mvr121 pmid: 21984612
90 Janda E, Lehmann K, Killisch I, Jechlinger M, Herzig M, Downward J, Beug H, Grünert S. Ras and TGFβ cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J Cell Biol 2002; 156(2): 299–313
https://doi.org/10.1083/jcb.200109037 pmid: 11790801
91 Horiguchi K, Shirakihara T, Nakano A, Imamura T, Miyazono K, Saitoh M. Role of Ras signaling in the induction of Snail by transforming growth factor-β. J Biol Chem 2009; 284(1): 245–253
https://doi.org/10.1074/jbc.M804777200 pmid: 19010789
92 Vasilaki E, Morikawa M, Koinuma D, Mizutani A, Hirano Y, Ehata S, Sundqvist A, Kawasaki N, Cedervall J, Olsson AK, Aburatani H, Moustakas A, Miyazono K, Heldin CH. Ras and TGF-β signaling enhance cancer progression by promoting the DNp63 transcriptional program. Sci Signal 2016; 9(442): ra84
https://doi.org/10.1126/scisignal.aag3232 pmid: 27555661
93 Arase M, Tamura Y, Kawasaki N, Isogaya K, Nakaki R, Mizutani A, Tsutsumi S, Aburatani H, Miyazono K, Koinuma D. Dynamics of chromatin accessibility during TGF-β-induced EMT of Ras-transformed mammary gland epithelial cells. Sci Rep 2017; 7(1): 1166
https://doi.org/10.1038/s41598-017-00973-4 pmid: 28446749
94 Östman A, Augsten M. Cancer-associated fibroblasts and tumor growth—bystanders turning into key players. Curr Opin Genet Dev 2009; 19(1): 67–73
https://doi.org/10.1016/j.gde.2009.01.003 pmid: 19211240
95 Pietras K, Östman A. Hallmarks of cancer: interactions with the tumor stroma. Exp Cell Res 2010; 316(8): 1324–1331
https://doi.org/10.1016/j.yexcr.2010.02.045 pmid: 20211171
96 Otranto M, Sarrazy V, Bonté F, Hinz B, Gabbiani G, Desmoulière A. The role of the myofibroblast in tumor stroma remodeling. Cell Adhes Migr 2012; 6(3): 203–219
https://doi.org/10.4161/cam.20377 pmid: 22568985
97 Shirakihara T, Horiguchi K, Miyazawa K, Ehata S, Shibata T, Morita I, Miyazono K, Saitoh M. TGF-β regulates isoform switching of FGF receptors and epithelial-mesenchymal transition. EMBO J 2011; 30(4): 783–795
https://doi.org/10.1038/emboj.2010.351 pmid: 21224849
98 Warzecha CC, Sato TK, Nabet B, Hogenesch JB, Carstens RP. ESRP1 and ESRP2 are epithelial cell-type-specific regulators of FGFR2 splicing. Mol Cell 2009; 33(5): 591–601
https://doi.org/10.1016/j.molcel.2009.01.025 pmid: 19285943
99 Horiguchi K, Sakamoto K, Koinuma D, Semba K, Inoue A, Inoue S, Fujii H, Yamaguchi A, Miyazawa K, Miyazono K, Saitoh M. TGF-β drives epithelial-mesenchymal transition through δEF1-mediated downregulation of ESRP. Oncogene 2012; 31(26): 3190–3201
https://doi.org/10.1038/onc.2011.493 pmid: 22037216
100 Chen PY, Qin L, Barnes C, Charisse K, Yi T, Zhang X, Ali R, Medina PP, Yu J, Slack FJ, Anderson DG, Kotelianski V, Wang F, Tellides G, Simons M. FGF regulates TGF-β signaling and endothelial-to-mesenchymal transition via control of let-7 miRNA expression. Cell Reports 2012; 2(6): 1684–1696
https://doi.org/10.1016/j.celrep.2012.10.021 pmid: 23200853
101 Chen PY, Qin L, Tellides G, Simons M. Fibroblast growth factor receptor 1 is a key inhibitor of TGFβ signaling in the endothelium. Sci Signal 2014; 7(344): ra90
https://doi.org/10.1126/scisignal.2005504 pmid: 25249657
102 Correia AC, Moonen JR, Brinker MG, Krenning G. FGF2 inhibits endothelial-mesenchymal transition through microRNA-20a-mediated repression of canonical TGF-β signaling. J Cell Sci 2016; 129(3): 569–579
https://doi.org/10.1242/jcs.176248 pmid: 26729221
103 Akhurst RJ, Hata A. Targeting the TGFβ signalling pathway in disease. Nat Rev Drug Discov 2012; 11(10): 790–811
https://doi.org/10.1038/nrd3810 pmid: 23000686
104 Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133(4): 704–715
https://doi.org/10.1016/j.cell.2008.03.027 pmid: 18485877
105 Scheel C, Weinberg RA. Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin Cancer Biol 2012; 22(5-6): 396–403
https://doi.org/10.1016/j.semcancer.2012.04.001 pmid: 22554795
106 Scheel C, Eaton EN, Li SH, Chaffer CL, Reinhardt F, Kah KJ, Bell G, Guo W, Rubin J, Richardson AL, Weinberg RA. Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell 2011; 145(6): 926–940
https://doi.org/10.1016/j.cell.2011.04.029 pmid: 21663795
107 Huang S, Hölzel M, Knijnenburg T, Schlicker A, Roepman P, McDermott U, Garnett M, Grernrum W, Sun C, Prahallad A, Groenendijk FH, Mittempergher L, Nijkamp W, Neefjes J, Salazar R, ten Dijke P, Uramoto H, Tanaka F, Beijersbergen RL, Wessels LF, Bernards R. MED12 controls the response to multiple cancer drugs through regulation of TGF-β receptor signaling. Cell 2012; 151(5): 937–950
https://doi.org/10.1016/j.cell.2012.10.035 pmid: 23178117
108 Fischer KR, Durrans A, Lee S, Sheng J, Li F, Wong ST, Choi H, El Rayes T, Ryu S, Troeger J, Schwabe RF, Vahdat LT, Altorki NK, Mittal V, Gao D. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature 2015; 527(7579): 472–476
https://doi.org/10.1038/nature15748 pmid: 26560033
109 Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S, Washington MK, Neilson EG, Moses HL. TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 2004; 303(5659): 848–851
https://doi.org/10.1126/science.1090922 pmid: 14764882
110 Kojima Y, Acar A, Eaton EN, Mellody KT, Scheel C, Ben-Porath I, Onder TT, Wang ZC, Richardson AL, Weinberg RA, Orimo A. Autocrine TGF-β and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci USA 2010; 107(46): 20009–20014
https://doi.org/10.1073/pnas.1013805107 pmid: 21041659
111 Zeisberg EM, Potenta S, Xie L, Zeisberg M, Kalluri R. Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res 2007; 67(21): 10123–10128
https://doi.org/10.1158/0008-5472.CAN-07-3127 pmid: 17974953
112 Cuccarese MF, Dubach JM, Pfirschke C, Engblom C, Garris C, Miller MA, Pittet MJ, Weissleder R. Heterogeneity of macrophage infiltration and therapeutic response in lung carcinoma revealed by 3D organ imaging. Nat Commun 2017; 8: 14293
https://doi.org/10.1038/ncomms14293 pmid: 28176769
113 Kubota SI, Takahashi K, Nishida J, Morishita Y, Ehata S, Tainaka K, Miyazono K, Ueda HR. Whole-body profiling of cancer metastasis with single-cell resolution. Cell Reports 2017; 20(1): 236–250
https://doi.org/10.1016/j.celrep.2017.06.010 pmid: 28683317
114 Sullivan JP, Minna JD, Shay JW. Evidence for self-renewing lung cancer stem cells and their implications in tumor initiation, progression, and targeted therapy. Cancer Metastasis Rev 2010; 29(1): 61–72
https://doi.org/10.1007/s10555-010-9216-5 pmid: 20094757
115 Collisson EA, Campbell JD, Brooks AN, Berger AH, Lee W, Chmielecki J, Beer DG, Cope L, Creighton CJ, Danilova L, Ding L, Getz G, Hammerman PS, Neil Hayes D, Hernandez B, Herman JG, Heymach JV, Jurisica I, Kucherlapati R, Kwiatkowski D, Ladanyi M, Robertson G, Schultz N, Shen R, Sinha R, Sougnez C, Tsao MS, Travis WD, Weinstein JN, Wigle DA, Wilkerson MD, Chu A, Cherniack AD, Hadjipanayis A, Rosenberg M, Weisenberger DJ, Laird PW, Radenbaugh A, Ma S, Stuart JM, Averett Byers L, Baylin SB, Govindan R, Meyerson M, Rosenberg M, Gabriel SB, Cibulskis K, Sougnez C, Kim J, Stewart C, Lichtenstein L, Lander ES, Lawrence MS, Getz G, Kandoth C, Fulton R, Fulton LL, McLellan MD, Wilson RK, Ye K, Fronick CC, Maher CA, Miller CA, Wendl MC, Cabanski C, Ding L, Mardis E, Govindan R, Creighton CJ, Wheeler D, Balasundaram M, Butterfield YSN, Carlsen R, Chu A, Chuah E, Dhalla N, Guin R, Hirst C, Lee D, Li HI, Mayo M, Moore RA, Mungall AJ, Schein JE, Sipahimalani P, Tam A, Varhol R, Gordon Robertson A, Wye N, Thiessen N, Holt RA, Jones SJM, Marra MA, Campbell JD, Brooks AN, Chmielecki J, Imielinski M, Onofrio RC, Hodis E, Zack T, Sougnez C, Helman E, Sekhar Pedamallu C, Mesirov J, Cherniack AD, Saksena G, Schumacher SE, Carter SL, Hernandez B, Garraway L, Beroukhim R, Gabriel SB, Getz G, Meyerson M, Hadjipanayis A, Lee S, Mahadeshwar HS, Pantazi A, Protopopov A, Ren X, Seth S, Song X, Tang J, Yang L, Zhang J, Chen PC, Parfenov M, Wei Xu A, Santoso N, Chin L, Park PJ, Kucherlapati R, Hoadley KA, Todd Auman J, Meng S, Shi Y, Buda E, Waring S, Veluvolu U, Tan D, Mieczkowski PA, Jones CD, Simons JV, Soloway MG, Bodenheimer T, Jefferys SR, Roach J, Hoyle AP, Wu J, Balu S, Singh D, Prins JF, Marron JS, Parker JS, Neil Hayes D, Perou CM, Liu J, Cope L, Danilova L, Weisenberger DJ, Maglinte DT, Lai PH, Bootwalla MS, Van Den Berg DJ, Triche T Jr, Baylin SB, Laird PW, Rosenberg M, Chin L, Zhang J, Cho J, DiCara D, Heiman D, Lin P, Mallard W, Voet D, Zhang H, Zou L, Noble MS, Lawrence MS, Saksena G, Gehlenborg N, Thorvaldsdottir H, Mesirov J, Nazaire MD, Robinson J, Getz G, Lee W, Arman Aksoy B, Ciriello G, Taylor BS, Dresdner G, Gao J, Gross B, Seshan VE, Ladanyi M, Reva B, Sinha R, Onur Sumer S, Weinhold N, Schultz N, Shen R, Sander C, Ng S, Ma S, Zhu J, Radenbaugh A, Stuart JM, Benz CC, Yau C, Haussler D, Spellman PT, Wilkerson MD, Parker JS, Hoadley KA, Kimes PK, Neil Hayes D, Perou CM, Broom BM, Wang J, Lu Y, Kwok Shing Ng P, Diao L, Averett Byers L, Liu W, Heymach JV, Amos CI, Weinstein JN, Akbani R, Mills GB, Curley E, Paulauskis J, Lau K, Morris S, Shelton T, Mallery D, Gardner J, Penny R, Saller C, Tarvin K, Richards WG, Cerfolio R, Bryant A, Raymond DP, Pennell NA, Farver C, Czerwinski C, Huelsenbeck-Dill L, Iacocca M, Petrelli N, Rabeno B, Brown J, Bauer T, Dolzhanskiy O, Potapova O, Rotin D, Voronina O, Nemirovich-Danchenko E, Fedosenko KV, Gal A, Behera M, Ramalingam SS, Sica G, Flieder D, Boyd J, Weaver JE, Kohl B, Huy Quoc Thinh D, Sandusky G, Juhl H, Duhig E, Illei P, Gabrielson E, Shin J, Lee B, Rogers K, Trusty D, Brock MV, Williamson C, Burks E, Rieger-Christ K, Holway A, Sullivan T, Wigle DA, Asiedu MK, Kosari F, Travis WD, Rekhtman N, Zakowski M, Rusch VW, Zippile P, Suh J, Pass H, Goparaju C, Owusu-Sarpong Y, Bartlett JMS, Kodeeswaran S, Parfitt J, Sekhon H, Albert M, Eckman J, Myers JB, Cheney R, Morrison C, Gaudioso C, Borgia JA, Bonomi P, Pool M, Liptay MJ, Moiseenko F, Zaytseva I, Dienemann H, Meister M, Schnabel PA, Muley TR, Peifer M, Gomez-Fernandez C, Herbert L, Egea S, Huang M, Thorne LB, Boice L, Hill Salazar A, Funkhouser WK, Kimryn Rathmell W, Dhir R, Yousem SA, Dacic S, Schneider F, Siegfried JM, Hajek R, Watson MA, McDonald S, Meyers B, Clarke B, Yang IA, Fong KM, Hunter L, Windsor M, Bowman RV, Peters S, Letovanec I, Khan KZ, Jensen MA, Snyder EE, Srinivasan D, Kahn AB, Baboud J, Pot DA, Mills Shaw KR, Sheth M, Davidsen T, Demchok JA, Yang L, Wang Z, Tarnuzzer R, Claude Zenklusen J, Ozenberger BA, Sofia HJ, Travis WD, Cheney R, Clarke B, Dacic S, Duhig E, Funkhouser WK, Illei P, Farver C, Rekhtman N, Sica G, Suh J, Tsao MS; Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014; 511(7511): 543–550
https://doi.org/10.1038/nature13385 pmid: 25079552
116 Saito RA, Watabe T, Horiguchi K, Kohyama T, Saitoh M, Nagase T, Miyazono K. Thyroid transcription factor-1 inhibits transforming growth factor-β-mediated epithelial-to-mesenchymal transition in lung adenocarcinoma cells. Cancer Res 2009; 69(7): 2783–2791
https://doi.org/10.1158/0008-5472.CAN-08-3490 pmid: 19293183
117 Larsen JE, Nathan V, Osborne JK, Farrow RK, Deb D, Sullivan JP, Dospoy PD, Augustyn A, Hight SK, Sato M, Girard L, Behrens C, Wistuba II, Gazdar AF, Hayward NK, Minna JD. ZEB1 drives epithelial-to-mesenchymal transition in lung cancer. J Clin Invest 2016; 126(9): 3219–3235
https://doi.org/10.1172/JCI76725 pmid: 27500490
118 Kawata M, Koinuma D, Ogami T, Umezawa K, Iwata C, Watabe T, Miyazono K. TGF-β-induced epithelial-mesenchymal transition of A549 lung adenocarcinoma cells is enhanced by pro-inflammatory cytokines derived from RAW 264.7 macrophage cells. J Biochem 2012; 151(2): 205–216
https://doi.org/10.1093/jb/mvr136 pmid: 22161143
119 Lazzaro D, Price M, de Felice M, Di Lauro R. The transcription factor TTF-1 is expressed at the onset of thyroid and lung morphogenesis and in restricted regions of the foetal brain. Development 1991; 113(4): 1093–1104
pmid: 1811929
120 Winslow MM, Dayton TL, Verhaak RG, Kim-Kiselak C, Snyder EL, Feldser DM, Hubbard DD, DuPage MJ, Whittaker CA, Hoersch S, Yoon S, Crowley D, Bronson RT, Chiang DY, Meyerson M, Jacks T. Suppression of lung adenocarcinoma progression by Nkx2-1. Nature 2011; 473(7345): 101–104
https://doi.org/10.1038/nature09881 pmid: 21471965
121 Yamaguchi T, Hosono Y, Yanagisawa K, Takahashi T. NKX2-1/TTF-1: an enigmatic oncogene that functions as a double-edged sword for cancer cell survival and progression. Cancer Cell 2013; 23(6): 718–723
https://doi.org/10.1016/j.ccr.2013.04.002 pmid: 23763999
122 Minoo P, Hu L, Zhu N, Borok Z, Bellusci S, Groffen J, Kardassis D, Li C. SMAD3 prevents binding of NKX2.1 and FOXA1 to the SpB promoter through its MH1 and MH2 domains. Nucleic Acids Res 2008; 36(1): 179–188
https://doi.org/10.1093/nar/gkm871 pmid: 18003659
123 Tam WL, Weinberg RA. The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat Med 2013; 19(11): 1438–1449
https://doi.org/10.1038/nm.3336 pmid: 24202396
124 Mizutani A, Koinuma D, Tsutsumi S, Kamimura N, Morikawa M, Suzuki HI, Imamura T, Miyazono K, Aburatani H. Cell type-specific target selection by combinatorial binding of Smad2/3 proteins and hepatocyte nuclear factor 4α in HepG2 cells. J Biol Chem 2011; 286(34): 29848–29860
https://doi.org/10.1074/jbc.M110.217745 pmid: 21646355
125 Mullen AC, Orlando DA, Newman JJ, Lovén J, Kumar RM, Bilodeau S, Reddy J, Guenther MG, DeKoter RP, Young RA. Master transcription factors determine cell-type-specific responses to TGF-β signaling. Cell 2011; 147(3): 565–576
https://doi.org/10.1016/j.cell.2011.08.050 pmid: 22036565
126 Isogaya K, Koinuma D, Tsutsumi S, Saito RA, Miyazawa K, Aburatani H, Miyazono K. A Smad3 and TTF-1/NKX2-1 complex regulates Smad4-independent gene expression. Cell Res 2014; 24(8): 994–1008
https://doi.org/10.1038/cr.2014.97 pmid: 25060702
127 Sakurai T, Isogaya K, Sakai S, Morikawa M, Morishita Y, Ehata S, Miyazono K, Koinuma D. RNA-binding motif protein 47 inhibits Nrf2 activity to suppress tumor growth in lung adenocarcinoma. Oncogene 2016; 35(38): 5000–5009
https://doi.org/10.1038/onc.2016.35 pmid: 26923328
128 Taguchi K, Yamamoto M. The KEAP1-NRF2 system in cancer. Front Oncol 2017; 7: 85
https://doi.org/10.3389/fonc.2017.00085 pmid: 28523248
129 Kawasaki N, Isogaya K, Dan S, Yamori T, Takano H, Yao R, Morishita Y, Taguchi L, Morikawa M, Heldin CH, Noda T, Ehata S, Miyazono K, Koinuma D. TUFT1 interacts with RABGAP1 and regulates mTORC1 signaling. Cell Discov 2018; 4(1): 1
https://doi.org/10.1038/s41421-017-0001-2 pmid: 29423269
130 Ying Z, Tian H, Li Y, Lian R, Li W, Wu S, Zhang HZ, Wu J, Liu L, Song J, Guan H, Cai J, Zhu X, Li J, Li M. CCT6A suppresses SMAD2 and promotes prometastatic TGF-β signaling. J Clin Invest 2017; 127(5): 1725–1740
https://doi.org/10.1172/JCI90439 pmid: 28375158
131 George J, Lim JS, Jang SJ, Cun Y, Ozretić L, Kong G, Leenders F, Lu X, Fernández-Cuesta L, Bosco G, Müller C, Dahmen I, Jahchan NS, Park KS, Yang D, Karnezis AN, Vaka D, Torres A, Wang MS, Korbel JO, Menon R, Chun SM, Kim D, Wilkerson M, Hayes N, Engelmann D, Pützer B, Bos M, Michels S, Vlasic I, Seidel D, Pinther B, Schaub P, Becker C, Altmüller J, Yokota J, Kohno T, Iwakawa R, Tsuta K, Noguchi M, Muley T, Hoffmann H, Schnabel PA, Petersen I, Chen Y, Soltermann A, Tischler V, Choi CM, Kim YH, Massion PP, Zou Y, Jovanovic D, Kontic M, Wright GM, Russell PA, Solomon B, Koch I, Lindner M, Muscarella LA, la Torre A, Field JK, Jakopovic M, Knezevic J, Castaños-Vélez E, Roz L, Pastorino U, Brustugun OT, Lund-Iversen M, Thunnissen E, Köhler J, Schuler M, Botling J, Sandelin M, Sanchez-Cespedes M, Salvesen HB, Achter V, Lang U, Bogus M, Schneider PM, Zander T, Ansén S, Hallek M, Wolf J, Vingron M, Yatabe Y, Travis WD, Nürnberg P, Reinhardt C, Perner S, Heukamp L, Büttner R, Haas SA, Brambilla E, Peifer M, Sage J, Thomas RK. Comprehensive genomic profiles of small cell lung cancer. Nature 2015; 524(7563): 47–53
https://doi.org/10.1038/nature14664 pmid: 26168399
132 Meuwissen R, Linn SC, Linnoila RI, Zevenhoven J, Mooi WJ, Berns A. Induction of small cell lung cancer by somatic inactivation of both Trp53 and Rb1 in a conditional mouse model. Cancer Cell 2003; 4(3): 181–189
https://doi.org/10.1016/S1535-6108(03)00220-4 pmid: 14522252
133 Jiang T, Collins BJ, Jin N, Watkins DN, Brock MV, Matsui W, Nelkin BD, Ball DW. Achaete-scute complex homologue 1 regulates tumor-initiating capacity in human small cell lung cancer. Cancer Res 2009; 69(3): 845–854
https://doi.org/10.1158/0008-5472.CAN-08-2762 pmid: 19176379
134 Borromeo MD, Savage TK, Kollipara RK, He M, Augustyn A, Osborne JK, Girard L, Minna JD, Gazdar AF, Cobb MH, Johnson JE. ASCL1 and NEUROD1 reveal heterogeneity in pulmonary neuroendocrine tumors and regulate distinct genetic programs. Cell Reports 2016; 16(5): 1259–1272
https://doi.org/10.1016/j.celrep.2016.06.081 pmid: 27452466
135 de Jonge RR, Garrigue-Antar L, Vellucci VF, Reiss M. Frequent inactivation of the transforming growth factor β type II receptor in small-cell lung carcinoma cells. Oncol Res 1997; 9(2): 89–98
pmid: 9167190
136 Hougaard S, Krarup M, Nørgaard P, Damstrup L, Spang-Thomsen M, Poulsen HS. High value of the radiobiological parameter Dq correlates to expression of the transforming growth factor β type II receptor in a panel of small cell lung cancer cell lines. Lung Cancer 1998; 20(1): 65–69
https://doi.org/10.1016/S0169-5002(98)00013-0 pmid: 9699189
137 Murai F, Koinuma D, Shinozaki-Ushiku A, Fukayama M, Miyaozono K, Ehata S. EZH2 promotes progression of small cell lung cancer by suppressing the TGF-β-Smad-ASCL1 pathway. Cell Discov 2015; 1(1): 15026
https://doi.org/10.1038/celldisc.2015.26 pmid: 27462425
138 Kimura M, Takenobu H, Akita N, Nakazawa A, Ochiai H, Shimozato O, Fujimura Y, Koseki H, Yoshino I, Kimura H, Nakagawara A, Kamijo T. Bmi1 regulates cell fate via tumor suppressor WWOX repression in small-cell lung cancer cells. Cancer Sci 2011; 102(5): 983–990
https://doi.org/10.1111/j.1349-7006.2011.01891.x pmid: 21276135
139 Byers LA, Wang J, Nilsson MB, Fujimoto J, Saintigny P, Yordy J, Giri U, Peyton M, Fan YH, Diao L, Masrorpour F, Shen L, Liu W, Duchemann B, Tumula P, Bhardwaj V, Welsh J, Weber S, Glisson BS, Kalhor N, Wistuba II, Girard L, Lippman SM, Mills GB, Coombes KR, Weinstein JN, Minna JD, Heymach JV. Proteomic profiling identifies dysregulated pathways in small cell lung cancer and novel therapeutic targets including PARP1. Cancer Discov 2012; 2(9): 798–811
https://doi.org/10.1158/2159-8290.CD-12-0112 pmid: 22961666
140 Hubaux R, Thu KL, Coe BP, MacAulay C, Lam S, Lam WL. EZH2 promotes E2F-driven SCLC tumorigenesis through modulation of apoptosis and cell-cycle regulation. J Thorac Oncol 2013; 8(8): 1102–1106
https://doi.org/10.1097/JTO.0b013e318298762f pmid: 23857401
141 Sato T, Kaneda A, Tsuji S, Isagawa T, Yamamoto S, Fujita T, Yamanaka R, Tanaka Y, Nukiwa T, Marquez VE, Ishikawa Y, Ichinose M, Aburatani H. PRC2 overexpression and PRC2-target gene repression relating to poorer prognosis in small cell lung cancer. Sci Rep 2013; 3(1): 1911
https://doi.org/10.1038/srep01911 pmid: 23714854
142 Poirier JT, Gardner EE, Connis N, Moreira AL, de Stanchina E, Hann CL, Rudin CM. DNA methylation in small cell lung cancer defines distinct disease subtypes and correlates with high expression of EZH2. Oncogene 2015; 34(48): 5869–5878
https://doi.org/10.1038/onc.2015.38 pmid: 25746006
143 Viré E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, Morey L, Van Eynde A, Bernard D, Vanderwinden JM, Bollen M, Esteller M, Di Croce L, de Launoit Y, Fuks F. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 2006; 439(7078): 871–874
https://doi.org/10.1038/nature04431 pmid: 16357870
144 Mollaoglu G, Guthrie MR, Böhm S, Brägelmann J, Can I, Ballieu PM, Marx A, George J, Heinen C, Chalishazar MD, Cheng H, Ireland AS, Denning KE, Mukhopadhyay A, Vahrenkamp JM, Berrett KC, Mosbruger TL, Wang J, Kohan JL, Salama ME, Witt BL, Peifer M, Thomas RK, Gertz J, Johnson JE, Gazdar AF, Wechsler-Reya RJ, Sos ML, Oliver TG. MYC drives progression of small cell lung cancer to a variant neuroendocrine subtype with vulnerability to Aurora kinase Inhibition. Cancer Cell 2017; 31(2): 270–285
https://doi.org/10.1016/j.ccell.2016.12.005 pmid: 28089889
145 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016; 66(1): 7–30
https://doi.org/10.3322/caac.21332 pmid: 26742998
146 Vincent A, Herman J, Schulick R, Hruban RH, Goggins M. Pancreatic cancer. Lancet 2011; 378(9791): 607–620
https://doi.org/10.1016/S0140-6736(10)62307-0 pmid: 21620466
147 Engholm G, Ferlay J, Christensen N, Bray F, Gjerstorff ML, Klint A, Køtlum JE, Olafsdóttir E, Pukkala E, Storm HH. NORDCAN — a Nordic tool for cancer information, planning, quality control and research. Acta Oncol 2010; 49(5): 725–736
https://doi.org/10.3109/02841861003782017 pmid: 20491528
148 Hidalgo M. Pancreatic cancer. N Engl J Med 2010; 362(17): 1605–1617
https://doi.org/10.1056/NEJMra0901557 pmid: 20427809
149 Hruban RH, Goggins M, Parsons J, Kern SE. Progression model for pancreatic cancer. Clin Cancer Res 2000; 6(8): 2969–2972
pmid: 10955772
150 Makohon-Moore A, Iacobuzio-Donahue CA. Pancreatic cancer biology and genetics from an evolutionary perspective. Nat Rev Cancer 2016; 16(9): 553–565
https://doi.org/10.1038/nrc.2016.66 pmid: 27444064
151 Hahn SA, Schutte M, Hoque AT, Moskaluk CA, da Costa LT, Rozenblum E, Weinstein CL, Fischer A, Yeo CJ, Hruban RH, Kern SE. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 1996; 271(5247): 350–353
https://doi.org/10.1126/science.271.5247.350 pmid: 8553070
152 Drost J, van Jaarsveld RH, Ponsioen B, Zimberlin C, van Boxtel R, Buijs A, Sachs N, Overmeer RM, Offerhaus GJ, Begthel H, Korving J, van de Wetering M, Schwank G, Logtenberg M, Cuppen E, Snippert HJ, Medema JP, Kops GJ, Clevers H. Sequential cancer mutations in cultured human intestinal stem cells. Nature 2015; 521(7550): 43–47
https://doi.org/10.1038/nature14415 pmid: 25924068
153 Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, Watanabe T, Kanai T, Sato T. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med 2015; 21(3): 256–262
https://doi.org/10.1038/nm.3802 pmid: 25706875
154 Vogelstein B, Kinzler KW. The multistep nature of cancer. Trends Genet 1993; 9(4): 138–141
https://doi.org/10.1016/0168-9525(93)90209-Z pmid: 8516849
155 Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer genome landscapes. Science 2013; 339(6127): 1546–1558
https://doi.org/10.1126/science.1235122 pmid: 23539594
156 Cancer Genome Atlas Research Network. Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell 2017; 32(2): 185–203.e13
157 Kanda M, Matthaei H, Wu J, Hong SM, Yu J, Borges M, Hruban RH, Maitra A, Kinzler K, Vogelstein B, Goggins M. Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia. Gastroenterology 2012; 142(4): 730–733.e9
158 Wilentz RE, Geradts J, Maynard R, Offerhaus GJ, Kang M, Goggins M, Yeo CJ, Kern SE, Hruban RH. Inactivation of the p16 (INK4A) tumor-suppressor gene in pancreatic duct lesions: loss of intranuclear expression. Cancer Res 1998; 58(20): 4740–4744
pmid: 9788631
159 Wilentz RE, Iacobuzio-Donahue CA, Argani P, McCarthy DM, Parsons JL, Yeo CJ, Kern SE, Hruban RH. Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia: evidence that DPC4 inactivation occurs late in neoplastic progression. Cancer Res 2000; 60(7): 2002–2006
pmid: 10766191
160 Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC, Miller DK, Christ AN, Bruxner TJ, Quinn MC, Nourse C, Murtaugh LC, Harliwong I, Idrisoglu S, Manning S, Nourbakhsh E, Wani S, Fink L, Holmes O, Chin V, Anderson MJ, Kazakoff S, Leonard C, Newell F, Waddell N, Wood S, Xu Q, Wilson PJ, Cloonan N, Kassahn KS, Taylor D, Quek K, Robertson A, Pantano L, Mincarelli L, Sanchez LN, Evers L, Wu J, Pinese M, Cowley MJ, Jones MD, Colvin EK, Nagrial AM, Humphrey ES, Chantrill LA, Mawson A, Humphris J, Chou A, Pajic M, Scarlett CJ, Pinho AV, Giry-Laterriere M, Rooman I, Samra JS, Kench JG, Lovell JA, Merrett ND, Toon CW, Epari K, Nguyen NQ, Barbour A, Zeps N, Moran-Jones K, Jamieson NB, Graham JS, Duthie F, Oien K, Hair J, Grützmann R, Maitra A, Iacobuzio-Donahue CA, Wolfgang CL, Morgan RA, Lawlor RT, Corbo V, Bassi C, Rusev B, Capelli P, Salvia R, Tortora G, Mukhopadhyay D, Petersen GM, Munzy DM, Fisher WE, Karim SA, Eshleman JR, Hruban RH, Pilarsky C, Morton JP, Sansom OJ, Scarpa A, Musgrove EA, Bailey UM, Hofmann O, Sutherland RL, Wheeler DA, Gill AJ, Gibbs RA, Pearson JV, Waddell N, Biankin AV, Grimmond SM. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 2016; 531(7592): 47–52
https://doi.org/10.1038/nature16965 pmid: 26909576
161 Biankin AV, Waddell N, Kassahn KS, Gingras MC, Muthuswamy LB, Johns AL, Miller DK, Wilson PJ, Patch AM, Wu J, Chang DK, Cowley MJ, Gardiner BB, Song S, Harliwong I, Idrisoglu S, Nourse C, Nourbakhsh E, Manning S, Wani S, Gongora M, Pajic M, Scarlett CJ, Gill AJ, Pinho AV, Rooman I, Anderson M, Holmes O, Leonard C, Taylor D, Wood S, Xu Q, Nones K, Fink JL, Christ A, Bruxner T, Cloonan N, Kolle G, Newell F, Pinese M, Mead RS, Humphris JL, Kaplan W, Jones MD, Colvin EK, Nagrial AM, Humphrey ES, Chou A, Chin VT, Chantrill LA, Mawson A, Samra JS, Kench JG, Lovell JA, Daly RJ, Merrett ND, Toon C, Epari K, Nguyen NQ, Barbour A, Zeps N; Australian Pancreatic Cancer Genome Initiative, Kakkar N, Zhao F, Wu YQ, Wang M, Muzny DM, Fisher WE, Brunicardi FC, Hodges SE, Reid JG, Drummond J, Chang K, Han Y, Lewis LR, Dinh H, Buhay CJ, Beck T, Timms L, Sam M, Begley K, Brown A, Pai D, Panchal A, Buchner N, De Borja R, Denroche RE, Yung CK, Serra S, Onetto N, Mukhopadhyay D, Tsao MS, Shaw PA, Petersen GM, Gallinger S, Hruban RH, Maitra A, Iacobuzio-Donahue CA, Schulick RD, Wolfgang CL, Morgan RA, Lawlor RT, Capelli P, Corbo V, Scardoni M, Tortora G, Tempero MA, Mann KM, Jenkins NA, Perez-Mancera PA, Adams DJ, Largaespada DA, Wessels LF, Rust AG, Stein LD, Tuveson DA, Copeland NG, Musgrove EA, Scarpa A, Eshleman JR, Hudson TJ, Sutherland RL, Wheeler DA, Pearson JV, McPherson JD, Gibbs RA, Grimmond SM. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 2012; 491(7424): 399–405
https://doi.org/10.1038/nature11547 pmid: 23103869
162 Waddell N, Pajic M, Patch AM, Chang DK, Kassahn KS, Bailey P, Johns AL, Miller D, Nones K, Quek K, Quinn MC, Robertson AJ, Fadlullah MZ, Bruxner TJ, Christ AN, Harliwong I, Idrisoglu S, Manning S, Nourse C, Nourbakhsh E, Wani S, Wilson PJ, Markham E, Cloonan N, Anderson MJ, Fink JL, Holmes O, Kazakoff SH, Leonard C, Newell F, Poudel B, Song S, Taylor D, Waddell N, Wood S, Xu Q, Wu J, Pinese M, Cowley MJ, Lee HC, Jones MD, Nagrial AM, Humphris J, Chantrill LA, Chin V, Steinmann AM, Mawson A, Humphrey ES, Colvin EK, Chou A, Scarlett CJ, Pinho AV, Giry-Laterriere M, Rooman I, Samra JS, Kench JG, Pettitt JA, Merrett ND, Toon C, Epari K, Nguyen NQ, Barbour A, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Aust D, Hruban RH, Maitra A, Iacobuzio-Donahue CA, Wolfgang CL, Morgan RA, Lawlor RT, Corbo V, Bassi C, Falconi M, Zamboni G, Tortora G, Tempero MA; Australian Pancreatic Cancer Genome Initiative, Gill AJ, Eshleman JR, Pilarsky C, Scarpa A, Musgrove EA, Pearson JV, Biankin AV, Grimmond SM. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 2015; 518(7540): 495–501
https://doi.org/10.1038/nature14169 pmid: 25719666
163 Witkiewicz AK, McMillan EA, Balaji U, Baek G, Lin WC, Mansour J, Mollaee M, Wagner KU, Koduru P, Yopp A, Choti MA, Yeo CJ, McCue P, White MA, Knudsen ES. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat Commun 2015; 6(1): 6744
https://doi.org/10.1038/ncomms7744 pmid: 25855536
164 Notta F, Chan-Seng-Yue M, Lemire M, Li Y, Wilson GW, Connor AA, Denroche RE, Liang SB, Brown AM, Kim JC, Wang T, Simpson JT, Beck T, Borgida A, Buchner N, Chadwick D, Hafezi-Bakhtiari S, Dick JE, Heisler L, Hollingsworth MA, Ibrahimov E, Jang GH, Johns J, Jorgensen LG, Law C, Ludkovski O, Lungu I, Ng K, Pasternack D, Petersen GM, Shlush LI, Timms L, Tsao MS, Wilson JM, Yung CK, Zogopoulos G, Bartlett JM, Alexandrov LB, Real FX, Cleary SP, Roehrl MH, McPherson JD, Stein LD, Hudson TJ, Campbell PJ, Gallinger S. A renewed model of pancreatic cancer evolution based on genomic rearrangement patterns. Nature 2016; 538(7625): 378–382
https://doi.org/10.1038/nature19823 pmid: 27732578
165 Sundqvist A, Morikawa M, Ren J, Vasilaki E, Kawasaki N, Kobayashi M, Koinuma D, Aburatani H, Miyazono K, Heldin CH, van Dam H, ten Dijke P. JUNB governs a feed-forward network of TGFβ signaling that aggravates breast cancer invasion. Nucleic Acids Res 2018; 46(3): 1180–1195
https://doi.org/10.1093/nar/gkx1190 pmid: 29186616
166 Goggins M, Shekher M, Turnacioglu K, Yeo CJ, Hruban RH, Kern SE. Genetic alterations of the transforming growth factor β receptor genes in pancreatic and biliary adenocarcinomas. Cancer Res 1998; 58(23): 5329–5332
pmid: 9850059
167 Su GH, Bansal R, Murphy KM, Montgomery E, Yeo CJ, Hruban RH, Kern SE. ACVR1B (ALK4, activin receptor type 1B) gene mutations in pancreatic carcinoma. Proc Natl Acad Sci USA 2001; 98(6): 3254–3257
https://doi.org/10.1073/pnas.051484398 pmid: 11248065
168 Blackford A, Serrano OK, Wolfgang CL, Parmigiani G, Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Eshleman JR, Goggins M, Jaffee EM, Iacobuzio-Donahue CA, Maitra A, Cameron JL, Olino K, Schulick R, Winter J, Herman JM, Laheru D, Klein AP, Vogelstein B, Kinzler KW, Velculescu VE, Hruban RH. SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer. Clin Cancer Res 2009; 15(14): 4674–4679
https://doi.org/10.1158/1078-0432.CCR-09-0227 pmid: 19584151
169 Tascilar M, Skinner HG, Rosty C, Sohn T, Wilentz RE, Offerhaus GJ, Adsay V, Abrams RA, Cameron JL, Kern SE, Yeo CJ, Hruban RH, Goggins M. The SMAD4 protein and prognosis of pancreatic ductal adenocarcinoma. Clin Cancer Res 2001; 7(12): 4115–4121
pmid: 11751510
170 Hingorani SR, Petricoin EF III, Maitra A, Rajapakse V, King C, Jacobetz MA, Ross S, Conrads TP, Veenstra TD, Hitt BA, Kawaguchi Y, Johann D, Liotta LA, Crawford HC, Putt ME, Jacks T, Wright CV, Hruban RH, Lowy AM, Tuveson DA. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 2003; 4(6): 437–450
https://doi.org/10.1016/S1535-6108(03)00309-X pmid: 14706336
171 Bardeesy N, Cheng KH, Berger JH, Chu GC, Pahler J, Olson P, Hezel AF, Horner J, Lauwers GY, Hanahan D, DePinho RA. Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev 2006; 20(22): 3130–3146
https://doi.org/10.1101/gad.1478706 pmid: 17114584
172 Izeradjene K, Combs C, Best M, Gopinathan A, Wagner A, Grady WM, Deng CX, Hruban RH, Adsay NV, Tuveson DA, Hingorani SR. KrasG12D and Smad4/Dpc4 haploinsufficiency cooperate to induce mucinous cystic neoplasms and invasive adenocarcinoma of the pancreas. Cancer Cell 2007; 11(3): 229–243
https://doi.org/10.1016/j.ccr.2007.01.017 pmid: 17349581
173 Kuang C, Xiao Y, Liu X, Stringfield TM, Zhang S, Wang Z, Chen Y. In vivo disruption of TGF-β signaling by Smad7 leads to premalignant ductal lesions in the pancreas. Proc Natl Acad Sci USA 2006; 103(6): 1858–1863
https://doi.org/10.1073/pnas.0508977103 pmid: 16443684
174 Ijichi H, Chytil A, Gorska AE, Aakre ME, Fujitani Y, Fujitani S, Wright CV, Moses HL. Aggressive pancreatic ductal adenocarcinoma in mice caused by pancreas-specific blockade of transforming growth factor-β signaling in cooperation with active Kras expression. Genes Dev 2006; 20(22): 3147–3160
https://doi.org/10.1101/gad.1475506 pmid: 17114585
175 Xi Q, Wang Z, Zaromytidou AI, Zhang XH, Chow-Tsang LF, Liu JX, Kim H, Barlas A, Manova-Todorova K, Kaartinen V, Studer L, Mark W, Patel DJ, Massagué J. A poised chromatin platform for TGF-β access to master regulators. Cell 2011; 147(7): 1511–1524
https://doi.org/10.1016/j.cell.2011.11.032 pmid: 22196728
176 Vincent DF, Gout J, Chuvin N, Arfi V, Pommier RM, Bertolino P, Jonckheere N, Ripoche D, Kaniewski B, Martel S, Langlois JB, Goddard-Léon S, Colombe A, Janier M, Van Seuningen I, Losson R, Valcourt U, Treilleux I, Dubus P, Bardeesy N, Bartholin L. Tif1g suppresses murine pancreatic tumoral transformation by a Smad4-independent pathway. Am J Pathol 2012; 180(6): 2214–2221
https://doi.org/10.1016/j.ajpath.2012.02.006 pmid: 22469842
177 Levy L, Hill CS. Alterations in components of the TGF-β superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev 2006; 17(1-2): 41–58
https://doi.org/10.1016/j.cytogfr.2005.09.009 pmid: 16310402
178 Rowland-Goldsmith MA, Maruyama H, Matsuda K, Idezawa T, Ralli M, Ralli S, Korc M. Soluble type II transforming growth factor-β receptor attenuates expression of metastasis-associated genes and suppresses pancreatic cancer cell metastasis. Mol Cancer Ther 2002; 1(3): 161–167
pmid: 12467210
179 Gaspar NJ, Li L, Kapoun AM, Medicherla S, Reddy M, Li G, O’Young G, Quon D, Henson M, Damm DL, Muiru GT, Murphy A, Higgins LS, Chakravarty S, Wong DH. Inhibition of transforming growth factor β signaling reduces pancreatic adenocarcinoma growth and invasiveness. Mol Pharmacol 2007; 72(1): 152–161
https://doi.org/10.1124/mol.106.029025 pmid: 17400764
180 Murakami T, Hiroshima Y, Miyake K, Hwang HK, Kiyuna T, DeLong JC, Lwin TM, Matsuyama R, Mori R, Kumamoto T, Chishima T, Tanaka K, Ichikawa Y, Bouvet M, Endo I, Hoffman RM. Color-coded intravital imaging demonstrates a transforming growth factor-β (TGF-β) antagonist selectively targets stromal cells in a human pancreatic-cancer orthotopic mouse model. Cell Cycle 2017; 16(10): 1008–1014
https://doi.org/10.1080/15384101.2017.1315489 pmid: 28441080
181 Melisi D, Ishiyama S, Sclabas GM, Fleming JB, Xia Q, Tortora G, Abbruzzese JL, Chiao PJ. LY2109761, a novel transforming growth factor β receptor type I and type II dual inhibitor, as a therapeutic approach to suppressing pancreatic cancer metastasis. Mol Cancer Ther 2008; 7(4): 829–840
https://doi.org/10.1158/1535-7163.MCT-07-0337 pmid: 18413796
182 Ostapoff KT, Cenik BK, Wang M, Ye R, Xu X, Nugent D, Hagopian MM, Topalovski M, Rivera LB, Carroll KD, Brekken RA. Neutralizing murine TGFβR2 promotes a differentiated tumor cell phenotype and inhibits pancreatic cancer metastasis. Cancer Res 2014; 74(18): 4996–5007
https://doi.org/10.1158/0008-5472.CAN-13-1807 pmid: 25060520
183 Fujiwara Y, Nokihara H, Yamada Y, Yamamoto N, Sunami K, Utsumi H, Asou H, TakahashI O, Ogasawara K, Gueorguieva I, Tamura T. Phase 1 study of galunisertib, a TGF-β receptor I kinase inhibitor, in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol 2015; 76(6): 1143–1152
https://doi.org/10.1007/s00280-015-2895-4 pmid: 26526984
184 Ikeda M, Takahashi H, Kondo S, Lahn MMF, Ogasawara K, Benhadji KA, Fujii H, Ueno H. Phase 1b study of galunisertib in combination with gemcitabine in Japanese patients with metastatic or locally advanced pancreatic cancer. Cancer Chemother Pharmacol 2017; 79(6): 1169–1177
https://doi.org/10.1007/s00280-017-3313-x pmid: 28451833
185 Moustakas A, Heldin CH. Non-Smad TGF-β signals. J Cell Sci 2005; 118(Pt 16): 3573–3584
https://doi.org/10.1242/jcs.02554 pmid: 16105881
186 Lonardo E, Hermann PC, Mueller MT, Huber S, Balic A, Miranda-Lorenzo I, Zagorac S, Alcala S, Rodriguez-Arabaolaza I, Ramirez JC, Torres-Ruíz R, Garcia E, Hidalgo M, Cebrián DÁ, Heuchel R, Löhr M, Berger F, Bartenstein P, Aicher A, Heeschen C. Nodal/activin signaling drives self-renewal and tumorigenicity of pancreatic cancer stem cells and provides a target for combined drug therapy. Cell Stem Cell 2011; 9(5): 433–446
https://doi.org/10.1016/j.stem.2011.10.001 pmid: 22056140
187 Hoshino Y, Nishida J, Katsuno Y, Koinuma D, Aoki T, Kokudo N, Miyazono K, Ehata S. Smad4 decreases the population of pancreatic cancer-initiating cells through transcriptional repression of ALDH1A1. Am J Pathol 2015; 185(5): 1457–1470
https://doi.org/10.1016/j.ajpath.2015.01.011 pmid: 25769430
188 Whittle MC, Izeradjene K, Rani PG, Feng L, Carlson MA, DelGiorno KE, Wood LD, Goggins M, Hruban RH, Chang AE, Calses P, Thorsen SM, Hingorani SR. RUNX3 controls a metastatic switch in pancreatic ductal adenocarcinoma. Cell 2015; 161(6): 1345–1360
https://doi.org/10.1016/j.cell.2015.04.048 pmid: 26004068
189 David CJ, Huang YH, Chen M, Su J, Zou Y, Bardeesy N, Iacobuzio-Donahue CA, Massagué J. TGF-β tumor suppression through a lethal EMT. Cell 2016; 164(5): 1015–1030
https://doi.org/10.1016/j.cell.2016.01.009 pmid: 26898331
190 Gore J, Korc M. Pancreatic cancer stroma: friend or foe? Cancer Cell 2014; 25(6): 711–712
https://doi.org/10.1016/j.ccr.2014.05.026 pmid: 24937454
191 Zhan HX, Zhou B, Cheng YG, Xu JW, Wang L, Zhang GY, Hu SY. Crosstalk between stromal cells and cancer cells in pancreatic cancer: new insights into stromal biology. Cancer Lett 2017; 392: 83–93
https://doi.org/10.1016/j.canlet.2017.01.041 pmid: 28189533
192 Takahashi K, Ehata S, Koinuma D, Morishita Y, Soda M, Mano H, Miyazono K. Pancreatic tumor microenvironment confers highly malignant properties on pancreatic cancer cells. Oncogene 2018; 37(21): 2757–2772
https://doi.org/10.1038/s41388-018-0144-0 pmid: 29511349
193 Ding N, Yu RT, Subramaniam N, Sherman MH, Wilson C, Rao R, Leblanc M, Coulter S, He M, Scott C, Lau SL, Atkins AR, Barish GD, Gunton JE, Liddle C, Downes M, Evans RM. A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response. Cell 2013; 153(3): 601–613
https://doi.org/10.1016/j.cell.2013.03.028 pmid: 23622244
194 Sherman MH, Yu RT, Engle DD, Ding N, Atkins AR, Tiriac H, Collisson EA, Connor F, Van Dyke T, Kozlov S, Martin P, Tseng TW, Dawson DW, Donahue TR, Masamune A, Shimosegawa T, Apte MV, Wilson JS, Ng B, Lau SL, Gunton JE, Wahl GM, Hunter T, Drebin JA, O’Dwyer PJ, Liddle C, Tuveson DA, Downes M, Evans RM. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell 2014; 159(1): 80–93
https://doi.org/10.1016/j.cell.2014.08.007 pmid: 25259922
195 Akhurst RJ. Targeting TGF-β signaling for therapeutic gain. Cold Spring Harb Perspect Biol 2017; 9(10): a022301
https://doi.org/10.1101/cshperspect.a022301 pmid: 28246179
196 Assoian RK, Komoriya A, Meyers CA, Miller DM, Sporn MB. Transforming growth factor-β in human platelets. Identification of a major storage site, purification, and characterization. J Biol Chem 1983; 258(11): 7155–7160
pmid: 6602130
197 Kong FM, Anscher MS, Murase T, Abbott BD, Iglehart JD, Jirtle RL. Elevated plasma transforming growth factor-β1 levels in breast cancer patients decrease after surgical removal of the tumor. Ann Surg 1995; 222(2): 155–162
https://doi.org/10.1097/00000658-199508000-00007 pmid: 7543740
198 Shim KS, Kim KH, Han WS, Park EB. Elevated serum levels of transforming growth factor-β1 in patients with colorectal carcinoma: its association with tumor progression and its significant decrease after curative surgical resection. Cancer 1999; 85(3): 554–561
https://doi.org/10.1002/(SICI)1097-0142(19990201)85:3<554::AID-CNCR6>3.0.CO;2-X pmid: 10091729
199 Labelle M, Begum S, Hynes RO. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 2011; 20(5): 576–590
https://doi.org/10.1016/j.ccr.2011.09.009 pmid: 22094253
200 Wolfman NM, McPherron AC, Pappano WN, Davies MV, Song K, Tomkinson KN, Wright JF, Zhao L, Sebald SM, Greenspan DS, Lee SJ. Activation of latent myostatin by the BMP-1/tolloid family of metalloproteinases. Proc Natl Acad Sci USA 2003; 100(26): 15842–15846
https://doi.org/10.1073/pnas.2534946100 pmid: 14671324
201 Yoshinaga K, Obata H, Jurukovski V, Mazzieri R, Chen Y, Zilberberg L, Huso D, Melamed J, Prijatelj P, Todorovic V, Dabovic B, Rifkin DB. Perturbation of transforming growth factor (TGF)-β1 association with latent TGF-β binding protein yields inflammation and tumors. Proc Natl Acad Sci USA 2008; 105(48): 18758–18763
https://doi.org/10.1073/pnas.0805411105 pmid: 19022904
202 Isogai Z, Ono RN, Ushiro S, Keene DR, Chen Y, Mazzieri R, Charbonneau NL, Reinhardt DP, Rifkin DB, Sakai LY. Latent transforming growth factor β-binding protein 1 interacts with fibrillin and is a microfibril-associated protein. J Biol Chem 2003; 278(4): 2750–2757
https://doi.org/10.1074/jbc.M209256200 pmid: 12429738
203 Shi M, Zhu J, Wang R, Chen X, Mi L, Walz T, Springer TA. Latent TGF-β structure and activation. Nature 2011; 474(7351): 343–349
https://doi.org/10.1038/nature10152 pmid: 21677751
204 Annes JP, Chen Y, Munger JS, Rifkin DB. Integrin αVβ6-mediated activation of latent TGF-β requires the latent TGF-β binding protein-1. J Cell Biol 2004; 165(5): 723–734
https://doi.org/10.1083/jcb.200312172 pmid: 15184403
205 Dong X, Zhao B, Iacob RE, Zhu J, Koksal AC, Lu C, Engen JR, Springer TA. Force interacts with macromolecular structure in activation of TGF-β. Nature 2017; 542(7639): 55–59
https://doi.org/10.1038/nature21035 pmid: 28117447
206 Ollendorff V, Noguchi T, deLapeyriere O, Birnbaum D. The GARP gene encodes a new member of the family of leucine-rich repeat-containing proteins. Cell Growth Differ 1994; 5(2): 213–219
pmid: 8180135
207 Stockis J, Dedobbeleer O, Lucas S. Role of GARP in the activation of latent TGF-β1. Mol Biosyst 2017; 13(10): 1925–1935
https://doi.org/10.1039/C7MB00251C pmid: 28795730
208 Probst-Kepper M, Geffers R, Kröger A, Viegas N, Erck C, Hecht HJ, Lünsdorf H, Roubin R, Moharregh-Khiabani D, Wagner K, Ocklenburg F, Jeron A, Garritsen H, Arstila TP, Kekäläinen E, Balling R, Hauser H, Buer J, Weiss S. GARP: a key receptor controlling FOXP3 in human regulatory T cells. J Cell Mol Med 2009; 13(9b 9B): 3343–3357
https://doi.org/10.1111/j.1582-4934.2009.00782.x pmid: 19453521
209 Gauthy E, Cuende J, Stockis J, Huygens C, Lethé B, Collet JF, Bommer G, Coulie PG, Lucas S. GARP is regulated by miRNAs and controls latent TGF-β1 production by human regulatory T cells. PLoS One 2013; 8(9): e76186
https://doi.org/10.1371/journal.pone.0076186 pmid: 24098777
210 Zhou Q, Haupt S, Prots I, Thümmler K, Kremmer E, Lipsky PE, Schulze-Koops H, Skapenko A. miR-142-3p is involved in CD25+ CD4 T cell proliferation by targeting the expression of glycoprotein A repetitions predominant. J Immunol 2013; 190(12): 6579–6588
https://doi.org/10.4049/jimmunol.1202993 pmid: 23650616
211 Wu BX, Li A, Lei L, Kaneko S, Wallace C, Li X, Li Z. Glycoprotein A repetitions predominant (GARP) positively regulates transforming growth factor (TGF) β3 and is essential for mouse palatogenesis. J Biol Chem 2017; 292(44): 18091–18097
https://doi.org/10.1074/jbc.M117.797613 pmid: 28912269
212 Stockis J, Liénart S, Colau D, Collignon A, Nishimura SL, Sheppard D, Coulie PG, Lucas S. Blocking immunosuppression by human Tregs in vivo with antibodies targeting integrin αVβ8. Proc Natl Acad Sci USA 2017; 114(47): E10161–E10168
https://doi.org/10.1073/pnas.1710680114 pmid: 29109269
213 Kitagawa Y, Sakaguchi S. Molecular control of regulatory T cell development and function. Curr Opin Immunol 2017; 49: 64–70
https://doi.org/10.1016/j.coi.2017.10.002 pmid: 29065384
214 Takimoto T, Wakabayashi Y, Sekiya T, Inoue N, Morita R, Ichiyama K, Takahashi R, Asakawa M, Muto G, Mori T, Hasegawa E, Saika S, Hara T, Nomura M, Yoshimura A. Smad2 and Smad3 are redundantly essential for the TGF-β-mediated regulation of regulatory T plasticity and Th1 development. J Immunol 2010; 185(2): 842–855
https://doi.org/10.4049/jimmunol.0904100 pmid: 20548029
215 Ravi R, Noonan KA, Pham V, Bedi R, Zhavoronkov A, Ozerov IV, Makarev E, V Artemov A, Wysocki PT, Mehra R, Nimmagadda S, Marchionni L, Sidransky D, Borrello IM, Izumchenko E, Bedi A. Bifunctional immune checkpoint-targeted antibody-ligand traps that simultaneously disable TGFβ enhance the efficacy of cancer immunotherapy. Nat Commun 2018; 9(1): 741
https://doi.org/10.1038/s41467-017-02696-6 pmid: 29467463
216 Burchill MA, Yang J, Vogtenhuber C, Blazar BR, Farrar MA. IL-2 receptor β-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J Immunol 2007; 178(1): 280–290
https://doi.org/10.4049/jimmunol.178.1.280 pmid: 17182565
217 Wang R, Zhu J, Dong X, Shi M, Lu C, Springer TA. GARP regulates the bioavailability and activation of TGFβ. Mol Biol Cell 2012; 23(6): 1129–1139
https://doi.org/10.1091/mbc.e11-12-1018 pmid: 22278742
218 Wang R, Wan Q, Kozhaya L, Fujii H, Unutmaz D. Identification of a regulatory T cell specific cell surface molecule that mediates suppressive signals and induces Foxp3 expression. PLoS One 2008; 3(7): e2705
https://doi.org/10.1371/journal.pone.0002705 pmid: 18628982
219 Wang R, Kozhaya L, Mercer F, Khaitan A, Fujii H, Unutmaz D. Expression of GARP selectively identifies activated human FOXP3+ regulatory T cells. Proc Natl Acad Sci USA 2009; 106(32): 13439–13444
https://doi.org/10.1073/pnas.0901965106 pmid: 19666573
220 O’Connor MN, Salles II, Cvejic A, Watkins NA, Walker A, Garner SF, Jones CI, Macaulay IC, Steward M, Zwaginga JJ, Bray SL, Dudbridge F, de Bono B, Goodall AH, Deckmyn H, Stemple DL, Ouwehand WH; Bloodomics Consortium. Functional genomics in zebrafish permits rapid characterization of novel platelet membrane proteins. Blood 2009; 113(19): 4754–4762
https://doi.org/10.1182/blood-2008-06-162693 pmid: 19109564
221 Zhu ZF, Meng K, Zhong YC, Qi L, Mao XB, Yu KW, Zhang W, Zhu PF, Ren ZP, Wu BW, Ji QW, Wang X, Zeng QT. Impaired circulating CD4+ LAP+ regulatory T cells in patients with acute coronary syndrome and its mechanistic study. PLoS One 2014; 9(2): e88775
https://doi.org/10.1371/journal.pone.0088775 pmid: 24558424
222 Liu Y, Zhao X, Zhong Y, Meng K, Yu K, Shi H, Wu B, Tony H, Zhu J, Zhu R, Peng Y, Mao Y, Cheng P, Mao X, Zeng Q. Heme oxygenase-1 restores impaired GARP+CD4+CD25+ regulatory T cells from patients with acute coronary syndrome by upregulating LAP and GARP expression on activated T lymphocytes. Cell Physiol Biochem 2015; 35(2): 553–570
https://doi.org/10.1159/000369719 pmid: 25612606
223 Szepetowski P, Ollendorff V, Grosgeorge J, Courseaux A, Birnbaum D, Theillet C, Gaudray P. DNA amplification at 11q13.5-q14 in human breast cancer. Oncogene 1992; 7(12): 2513–2517
pmid: 1461654
224 Metelli A, Wu BX, Fugle CW, Rachidi S, Sun S, Zhang Y, Wu J, Tomlinson S, Howe PH, Yang Y, Garrett-Mayer E, Liu B, Li Z. Surface expression of TGFβ docking receptor GARP promotes oncogenesis and immune tolerance in breast cancer. Cancer Res 2016; 76(24): 7106–7117
https://doi.org/10.1158/0008-5472.CAN-16-1456 pmid: 27913437
225 Kalathil S, Lugade AA, Miller A, Iyer R, Thanavala Y. Higher frequencies of GARP+CTLA-4+Foxp3+ T regulatory cells and myeloid-derived suppressor cells in hepatocellular carcinoma patients are associated with impaired T-cell functionality. Cancer Res 2013; 73(8): 2435–2444
https://doi.org/10.1158/0008-5472.CAN-12-3381 pmid: 23423978
226 Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12(4): 252–264
https://doi.org/10.1038/nrc3239 pmid: 22437870
227 Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, Kadel EE III, Koeppen H, Astarita JL, Cubas R, Jhunjhunwala S, Banchereau R, Yang Y, Guan Y, Chalouni C, Ziai J, Şenbabaoğlu Y, Santoro S, Sheinson D, Hung J, Giltnane JM, Pierce AA, Mesh K, Lianoglou S, Riegler J, Carano RAD, Eriksson P, Höglund M, Somarriba L, Halligan DL, van der Heijden MS, Loriot Y, Rosenberg JE, Fong L, Mellman I, Chen DS, Green M, Derleth C, Fine GD, Hegde PS, Bourgon R, Powles T. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 2018; 554(7693): 544–548
https://doi.org/10.1038/nature25501 pmid: 29443960
228 Tauriello DVF, Palomo-Ponce S, Stork D, Berenguer-Llergo A, Badia-Ramentol J, Iglesias M, Sevillano M, Ibiza S, Cañellas A, Hernando-Momblona X, Byrom D, Matarin JA, Calon A, Rivas EI, Nebreda AR, Riera A, Attolini CS, Batlle E. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 2018; 554(7693): 538–543
https://doi.org/10.1038/nature25492 pmid: 29443964
229 Lan Y, Zhang D, Xu C, Hance KW, Marelli B, Qi J, Yu H, Qin G, Sircar A, Hernández VM, Jenkins MH, Fontana RE, Deshpande A, Locke G, Sabzevari H, Radvanyi L, Lo KM. Enhanced preclinical antitumor activity of M7824, a bifunctional fusion protein simultaneously targeting PD-L1 and TGF-β. Sci Transl Med 2018; 10(424): eaan5488
https://doi.org/10.1126/scitranslmed.aan5488 pmid: 29343622
230 Anderton MJ, Mellor HR, Bell A, Sadler C, Pass M, Powell S, Steele SJ, Roberts RR, Heier A. Induction of heart valve lesions by small-molecule ALK5 inhibitors. Toxicol Pathol 2011; 39(6): 916–924
https://doi.org/10.1177/0192623311416259 pmid: 21859884
231 Rachidi S, Metelli A, Riesenberg B, Wu BX, Nelson MH, Wallace C, Paulos CM, Rubinstein MP, Garrett-Mayer E, Hennig M, Bearden DW, Yang Y, Liu B, Li Z. Platelets subvert T cell immunity against cancer via GARP-TGFβ axis. Sci Immunol 2017; 2(11): eaai7911
https://doi.org/10.1126/sciimmunol.aai7911 pmid: 28763790
232 Cuende J, Liénart S, Dedobbeleer O, van der Woning B, De Boeck G, Stockis J, Huygens C, Colau D, Somja J, Delvenne P, Hannon M, Baron F, Dumoutier L, Renauld JC, De Haard H, Saunders M, Coulie PG, Lucas S. Monoclonal antibodies against GARP/TGF-β1 complexes inhibit the immunosuppressive activity of human regulatory T cells in vivo. Sci Transl Med 2015; 7(284): 284ra56
https://doi.org/10.1126/scitranslmed.aaa1983 pmid: 25904740
233 Tan AR, Alexe G, Reiss M. Transforming growth factor-β signaling: emerging stem cell target in metastatic breast cancer? Breast Cancer Res Treat 2009; 115(3): 453–495
https://doi.org/10.1007/s10549-008-0184-1 pmid: 18841463
234 Imamura T, Hikita A, Inoue Y. The roles of TGF-β signaling in carcinogenesis and breast cancer metastasis. Breast Cancer 2012; 19(2): 118–124
https://doi.org/10.1007/s12282-011-0321-2 pmid: 22139728
235 Sundqvist A, ten Dijke P, van Dam H. Key signaling nodes in mammary gland development and cancer: Smad signal integration in epithelial cell plasticity. Breast Cancer Res 2012; 14(1): 204
https://doi.org/10.1186/bcr3066 pmid: 22315972
236 Naka K, Hirao A. Regulation of hematopoiesis and hematological disease by TGF-β family signaling molecules. Cold Spring Harb Perspect Biol 2017; 9(9): a027987
https://doi.org/10.1101/cshperspect.a027987 pmid: 28193723
237 Constam DB, Philipp J, Malipiero UV, ten Dijke P, Schachner M, Fontana A. Differential expression of transforming growth factor-β1, -β2, and -β3 by glioblastoma cells, astrocytes, and microglia. J Immunol 1992; 148(5): 1404–1410
pmid: 1538124
238 Krasagakis K, Thölke D, Farthmann B, Eberle J, Mansmann U, Orfanos CE. Elevated plasma levels of transforming growth factor (TGF)-β1 and TGF-β2 in patients with disseminated malignant melanoma. Br J Cancer 1998; 77(9): 1492–1494
https://doi.org/10.1038/bjc.1998.245 pmid: 9652767
239 Perera RM, Bardeesy N. Pancreatic cancer metabolism: breaking it down to build it back up. Cancer Discov 2015; 5(12): 1247–1261
[1] Jiahui Xu, Qianqian Wang, Elaine Lai Han Leung, Ying Li, Xingxing Fan, Qibiao Wu, Xiaojun Yao, Liang Liu. Compound C620-0696, a new potent inhibitor targeting BPTF, the chromatin-remodeling factor in non-small-cell lung cancer[J]. Front. Med., 2020, 14(1): 60-67.
[2] Zhao Zhang, Jun Jiang, Xiaodong Wu, Mengyao Zhang, Dan Luo, Renyu Zhang, Shiyou Li, Youwen He, Huijie Bian, Zhinan Chen. Chimeric antigen receptor T cell targeting EGFRvIII for metastatic lung cancer therapy[J]. Front. Med., 2019, 13(1): 57-68.
[3] Xuemei Zhao, Donghe Li, Qingsong Qiu, Bo Jiao, Ruihong Zhang, Ping Liu, Ruibao Ren. Zfyve16 regulates the proliferation of B-lymphoid cells[J]. Front. Med., 2018, 12(5): 559-565.
[4] Dalin Zhang, Liwei Qu, Bo Zhou, Guizhen Wang, Guangbiao Zhou. Genomic variations in the counterpart normal controls of lung squamous cell carcinomas[J]. Front. Med., 2018, 12(3): 280-288.
[5] Hongbing Shen. Low-dose CT for lung cancer screening: opportunities and challenges[J]. Front. Med., 2018, 12(1): 116-121.
[6] Alexandra Urman,H. Dean Hosgood. Curbing the burden of lung cancer[J]. Front. Med., 2016, 10(2): 228-232.
[7] Li Bian,Yonghua Ruan,Liju Ma,Hairong Hua,Li Zhou,Xiaoyu Tuo,Zheyan Zhou,Ting Li,Shiyue Liu,Kewei Jin. Pathogenesis sequences in Gejiu miners with lung cancer: an introduction[J]. Front. Med., 2015, 9(3): 344-349.
[8] Douglas D. Fang, Joan Cao, Jitesh P. Jani, Konstantinos Tsaparikos, Alessandra Blasina, Jill Kornmann, Maruja E. Lira, Jianying Wang, Zuzana Jirout, Justin Bingham, Zhou Zhu, Yin Gu, Gerrit Los, Zdenek Hostomsky, Todd VanArsdale. Combined gemcitabine and CHK1 inhibitor treatment induces apoptosis resistance in cancer stem cell-like cells enriched with tumor spheroids from a non-small cell lung cancer cell line[J]. Front Med, 2013, 7(4): 462-476.
[9] Yue Yu, Jie He. Molecular classification of non-small-cell lung cancer: diagnosis, individualized treatment, and prognosis[J]. Front Med, 2013, 7(2): 157-171.
[10] Yize Xiao, Ying Shao, Xianjun Yu, Guangbiao Zhou. The epidemic status and risk factors of lung cancer in Xuanwei City, Yunnan Province, China[J]. Front Med, 2012, 6(4): 388-394.
[11] Ji Qi, David Mu. MicroRNAs and lung cancers: from pathogenesis to clinical implications[J]. Front Med, 2012, 6(2): 134-155.
[12] Min ZHU, Xiang-Ning FU, Xiao-Ping CHEN. Lobectomy by video-assisted thoracoscopic surgery (VATS) for early stage of non-small cell lung cancer[J]. Front Med, 2011, 5(1): 53-60.
[13] Dian-Ke YU PhD, Chen WU MD, Wen TAN MD, Dong-Xin LIN MD, . Functional XPF polymorphisms associated with lung cancer susceptibility in a Chinese population[J]. Front. Med., 2010, 4(1): 82-89.
[14] Bo PENG BA , Jinnong ZHANG MD , Jamile S. WOODS MD , Wei PENG MD, PhD . Molecular markers and pathogenically targeted therapy in non-small cell lung cancer[J]. Front. Med., 2009, 3(3): 245-255.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed