Please wait a minute...
Frontiers of Agriculture in China

ISSN 1673-7334

ISSN 1673-744X(Online)

CN 11-5729/S

Frontiers of Agriculture in China  2011, Vol. 5 Issue (3): 284-290   https://doi.org/10.1007/s11703-011-1075-5
  RESEARCH ARTICLE 本期目录
Comparative mapping of QTLs for H+ secretion of root in maize (Zea mays L.) and cross phosphorus levels on two growth stages
Comparative mapping of QTLs for H+ secretion of root in maize (Zea mays L.) and cross phosphorus levels on two growth stages
Junyi CHEN(), Li XU
Institute of Medical Biotechnology in Chongqing/Institute of Chinese Medicine in Chongqing, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
 全文: PDF(132 KB)   HTML
Abstract

H+ is a root secretion that affects P acquisition and P-use efficiency (PUE) under deficient phosphorus in maize. The secretion of H+, difference value of H+ between deficient and normal phosphorus (DH), and relative H+ (RH) as well as the quantitative trait loci (QTLs) associated with these traits were determined for a F2:3 population derived from the cross of two contrasting maize (BoldItalic L.) genotypes, 082 and Ye107. By using composite interval mapping (CIM), a total of 14, 8, and 9 distinct QTLs were identified for H+, DH, and RH, respectively. Most loci of QTLs for traits H+, DH, and RH had different cross environments. It showed that H+ secretion possessed an environment-sensitive and multi-gene nature. The gene × environment interaction was actually reflected by H+ secretion. One region for QTL of trait H+ was detected at the interval of bnlg2228-bnlg100 (bin 1.08) on chromosome 1. Coincident QTLs in the important genomic region reflected the cross phosphorus levels, different cross growth stages, and two different cross environments. The QTL explained 10% to 14% total phenotypic variance of H+. Therefore, the above segment (bnlg2228-bnlg100) (bin 1.08) identified on chromosome 1 may be used in the future for MAS to improve the phosphorus efficiency in maize.

Key wordsmaize    QTL analysis    H+    difference value of H+    relative H+
收稿日期: 2009-06-23      出版日期: 2011-09-05
Corresponding Author(s): CHEN Junyi,Email:chenjunyi3@126.com   
 引用本文:   
. Comparative mapping of QTLs for H+ secretion of root in maize (Zea mays L.) and cross phosphorus levels on two growth stages[J]. Frontiers of Agriculture in China, 2011, 5(3): 284-290.
Junyi CHEN, Li XU. Comparative mapping of QTLs for H+ secretion of root in maize (Zea mays L.) and cross phosphorus levels on two growth stages. Front Agric Chin, 2011, 5(3): 284-290.
 链接本文:  
https://academic.hep.com.cn/fag/CN/10.1007/s11703-011-1075-5
https://academic.hep.com.cn/fag/CN/Y2011/V5/I3/284
TraitsParentsF2∶3 families
082Ye107MeanRangeσ^G2σ^E2hb2(%)
H-KXDP0.06700.03300.05250.0240-0.08100.00020.000161.3
H-KXNP0.02230.01990.02260.0114-0.04550.00010.000167.5
H-SUDP10.06900.03800.05760.0250-0.09200.00020.000163.1
H-SUDP20.08140.06780.06750.0325-0.11480.00030.000265.7
DH-KX0.04470.01310.02990.0126-0.05410.00010.000155.7
DH-SU10.0379-0.00600.0233-0.0113-0.04910.00010.000158.9
DH-SU20.03810.01270.03080.0108-0.06180.00010.000164.7
RH-KX3.00201.65602.37803.0570-1.49900.15100.140051.9
RH-SU12.22000.86301.76002.2300-0.86400.08500.083050.2
RH-SU21.88001.23001.91471.2480-2.52000.08380.073153.4
Tab.1  
TraitsParents
082Ye107
PEa0.8030.548
PAEa3.2302.237
WPUE-NPa5.246.01
WPUE-NPa5.115.87
H-DPa0.06700.0330
H-NPa0.02230.0199
Tab.2  
TreatmentsSource of variationSSDegree of freedomF value
SitesGenotypes0.08882402.14**
Environments0.003114.56**
G × E--3.54**
P levelsGenotypes0.03912401.59**
Environments0.107612.17*
G × E--4.55**
StagesGenotypes0.11162400.673*
Environments0.011914.23**
G × E--0.412**
Tab.3  
TreatmentsSource of variationSSDegree of freedomF value
SitesGenotypes0.03392403.05**
Environments0.00521112.84**
G × E--24.67*
StagesGenotypes0.03502406.72**
Environments0.00671310.60**
G × E--43.26*
Tab.4  
TreatmentsSources of variationSSDegree of freedomF value
SitesGenotypes36.532401.80**
Environments45.911543.99**
G × E36.65*
StagesGenotypes33.782404.96**
Environments2.871101.34**
G × E37.85*
Tab.5  
ItemPUEH+DH
H+0.7374**
DH0.7905**0.4028
RH0.7033**0.41290.4046
Tab.6  
NameCQPInterval markersClosest markersBinsLODTR2 (%)ADGADir
H1-KXDP1146.7bnlg2228-bnlg100bnlg1001.082.8313-0.0027-0.002PDYe107
H2a-KXDP232.1phi098-umc1165phi0982.023.45140.00090.0056ODYe107
H2b-KXDP246.0umc1185-umc1555umc11852.032.8422-0.00650.0052PDYe107
H8-KXDP879.0P3M7/b-dupssr14dupssr148.092.9516-0.0021-0.0024DYe107
H1-SUDP11146.7bnlg2228-bnlg100bnlg1001.082.8612-0.0026-0.0032ODYe107
H1-SUDP21146.7bnlg2228-bnlg100bnlg1001.082.9810-0.00190.0074ODYe107
H1-KXNP1146.7bnlg2228-bnlg100bnlg1001.083.1611-0.02170.0276ODYe107
H5-SUDP2588.7umc1092-phi331888umc10925.042.86120.0522-0.0530OD082
H5a-SUDP2516.0bnlg1006-P2M5/dP2M5/d5.002.6915-0.00570.0051DYe107
H3-KXNP349.7bnlg1325b-umc1772bnlg1325b3.022.93120.0027-0.0023D082
H5b-KXNP588.7umc1092-phi331888umc10925.042.50100.0020-0.0027OD082
H10-KXNP10154.2P2M8/a-bnlg1839bnlg183910.073.397-0.00100.0106ODYe107
DH4-KX4121.6P4M3/g-bnlg1337bnlg13374.102.60150.0013-0.0047OD082
DH5-KX516.0bnlg1006-P2M5/dP2M5/d5.003.3416-0.00340.0022PDYe107
DH8-KX879.0P3M7/b-dupssr14dupssr148.093.5911-0.0015-0.0022ODYe107
DH1-SUDP11116.0bnlg1556-bnlg1564bnlg15561.072.7210-0.00150.0044ODYe107
DH9a-SUDP1968.7nc134-P1M3/fP1M3/f9.032.5417-0.00460.0055DYe107
DH9b-SUDP1986.6P1M3/d-P1M3/gP1M3/g9.043.3870.00170.0047OD082
DH9c-SUDP19104.4umc1094-bnlg1191bnlg11919.062.6811-0.00240.0062ODYe107
DH6-SUDP2651.4umc1918-umc2316umc19186.033.23190.0039-0.0023PD082
RH6-KX636.4umc1572-phi389203umc15726.023.519-0.16870.1135PDYe107
RH2-SUDP1295.4nc131-P5M1/anc1312.052.906-0.10000.1068DYe107
RH3-SUDP13207.4umc1273-P1M4/iumc12733.084.7510.0096-0.1437OD082
RH8-SUDP180.0bnlg1252-umc1075bnlg12528.003.083-0.06910.1339ODYe107
RH1-SUDP2193.5bnlg1023-bnlg1041bnlg10231.063.04230.1215-0.0487PD082
RH3a-SUDP2349.7bnlg1325b-umc1772bnlg1325b3.022.6419-0.10930.0566PDYe107
RH3b-SUDP23207.4umc1273-P1M4/iumc12733.082.67140.0093-0.1037OD082
RH5a-SUDP25111.1dupssr10-umc1110bdupssr105.043.2519-0.13060.0463PDYe107
RH5b-SUDP25145.9umc1155-umc1264umc11555.053.00140.07950.0315PD082
Tab.7  
1 Ae N, Arihara J, Okada K, Yoshihara T, Johansen C (1990). Phosphorus uptake by pigeon pea and its role in cropping systems of the Indian subcontinent. Science , 248(4954): 477-480
doi: 10.1126/science.248.4954.477 pmid:17815599
2 Agrama H A S, Moussa M E (1996). Mapping QTLs in breeding for drought tolerance in maize (Zea mays L.). Euphytica , 91(1): 89-97
doi: 10.1007/BF00035278
3 Agrama H A S, Zakaria A G, Said F B, Tuinstra M (1999). Identification of quantitative trait loci for N use efficiency in maize. Mol Breed , 5(2): 187-195
doi: 10.1023/A:1009669507144
4 Chen J Y, Cai Y L, Xu L, Wang J G, Zhang W L, Liu Z Z, Peng K, Zhu Z J, Huang Z C, Ai J Z, Tang Q, Deng B H, Yang Z G, Luo J, Sun S L (2010). Identification of quantitative trait loci and epistasis for root characteristics and root exudations in maize (Zea mays L.) under deficient phosphorus. J Chongqing Univ: Eng Ed , 9(2): 105-116
5 Chen J, Xu L, Cai Y, Xu J (2008). QTL mapping of phosphorus efficiency and relative biologic characteristics in maize (Zea mays L.) at two sites. Plant Soil , 313(1-2): 251-266
doi: 10.1007/s11104-008-9698-x
6 Chen J, Xu L, Cai Y, Xu J, Xu J (2009). Identification of QTLs for phosphorus utilization efficiency in maize (Zea mays L.) across P levels. Euphytica , 167(2): 245-252
doi: 10.1007/s10681-009-9883-x
7 Guingo E, Hebert Y (1997). Relationships between mechanical resistance of the maize root system and root morphology, and their genotypic and environmental variation. Maydica , 42: 265-274
8 Guingo E, Hebert Y, Charcosset A (1998). Genetic analysis of root traits in maize. Agronomy , 18(3): 225-235
doi: 10.1051/agro:19980305
9 Hinsinger P (1998). How do plant roots acquire mineral nutrients? Chemical processes involved in the rhizosphere. Adv Agron , 64: 225-265
doi: 10.1016/S0065-2113(08)60506-4
10 Hinsinger P (2001). Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil , 237(2): 173-195
doi: 10.1023/A:1013351617532
11 Hinsinger P, Gilkes R J (1996). Mobilization of phosphate from phosphate rock and alumina-sorbed phosphate by the roots of ryegrass and clover as related to rhizosphere pH. Eur J Soil Sci , 47(4): 533-544
doi: 10.1111/j.1365-2389.1996.tb01853.x
12 Jones D L, Darrah P R (1995). Influx and efflux of organic acids across the soil-root interface of Zea mays L. and its implications in rhizosphere C flow. Plant Soil , 173(1): 103-109
doi: 10.1007/BF00155523
13 Jones E S, Liu C J, Gale M D, Hash C T, Witcombe J R (1998). Mapping quantitative trait loci for downy mildew resistance in pearl millet. Theor Appl Genet , 91(3): 448-456
doi: 10.1007/BF00222972
14 Landi P, Albrecht B, Giuliani M M, Sanguineti M C (1998). Seedling characteristics in hydroponic culture and field performance of maize genotypes with different resistance to root lodging. Maydica , 43: 111-116
15 Landi P, Giuliani M M, DaRFNah L L, Tuberosa R, Conti S, Sanguineti M C (2001). Variability for root and shoot traits in a maize population grown in hydroponics and in the field and their relationships with vertical root pulling resistance. Maydica , 46: 177-182
16 Paterson A H, Lan T H, Reischmann K P, Chang C, Lin Y R, Liu S C, Burow M D, Kowalski S P, Katsar C S, DelMonte T A, Feldmann K A, Schertz K F, Wendel J F (1996). Toward a unified genetic map of higher plants, transcending the monocot-dicot divergence. Nat Genet , 14(4): 380-382
doi: 10.1038/ng1296-380 pmid:8944014
17 Pellet D M, Grunes D L, Kochian L V (1995). Organic acid exudation as an aluminum tolerance mechanism in maize (Zea mays L.). Planta , 196(4): 788-795
doi: 10.1007/BF01106775
18 Pellet D M, Papernik L A, Kochian L V (1996). Multiple aluminum resistance mechanisms in wheat: The roles of root apical phosphate and malate exudation. Plant Physiol , 112(2): 591-597
pmid:12226413
19 Pratapbhanu S (2002). Phosphorus efficiency of wheat and sugar beet seedlings grown in soils with mainly calcium, or iron and aluminium phosphate. Plant Soil , 246(1): 41-52
doi: 10.1023/A:1021567331637
20 Rogers S O, Rehner S, Bledsoe C (1989). Exaction of DNA from Basidiomycetes for ribosomal DNA hybridization. Can J Bot , 67: 1235-1243
21 Tuberosa RSalvi SSanguineti M CMaccaferri MGiuliani SLandi P(2003). Searching for quantitative trait loci controlling root traits in maize: a critical appraisal. Plant and Soil , 255: 35-54
22 Tuberosa R, Sanguineti M C, Landi P, Giuliani M M, Salvi S, Conti S (2002). Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Mol Biol , 48: 697-712
doi: 10.1023/A:1014897607670 pmid:11999844
23 Tuberosa R, Sanguineti M C, Landi P, Salvi S, Casarini E, Conti S (1998). RFLP mapping of quantitative trait loci controlling abscisic acid concentration in leaves of drought-stressed maize (Zea mays L.). Theor Appl Genet , 97(5-6): 744-755
doi: 10.1007/s001220050951
24 Vos Hogers R, Bleeker M, Reijans M (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res , 23(21): 4404-4414
25 Yan X, Liao H, Beebe S E, Blair M W, Lynch J P (2004). QTL mapping of root hair and acid exudation traits and their relationship to phosphorus uptake in common bean. Plant Soil , 265(1-2): 17-29
doi: 10.1007/s11104-005-0693-1
26 Zhu J, Kaeppler S M, Lynch J P (2005). Mapping of QTL controlling root hair length in maize (Zea mays L.) under deficient phosphorus. Plant Soil , 270: 299-310
doi: 10.1007/s11104-004-1697-y
27 Zhu J, Lynch J P (2004). The contribution of lateral rooting to phosphorus acquisition efficiency in maize (Zea mays L.) seedlings. Funct Plant Biol , 31(10): 949-958
doi: 10.1071/FP04046
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed