Expression pattern of wheat miRNAs under salinity stress and prediction of salt-inducible miRNAs targets
Expression pattern of wheat miRNAs under salinity stress and prediction of salt-inducible miRNAs targets
Wenjing LU2, Jincai LI3, Fangpeng LIU2, Juntao GU2, Chengjin GUO1, Liu XU2, Huiyan ZHANG2, Kai XIAO1()
1. College of Agronomy, Agricultural University of Hebei, Baoding 071001, China; 2. College of Life Sciences, Agricultural University of Hebei, Baoding 071001, China; 3. Science and Technology Management Office, Agricultural University of Hebei, Baoding 071001, China
MicroRNAs (miRNAs) are non-coding small RNAs that regulate gene expression by translational repression or transcript degradation. Thus far, a large number of miRNAs have been identified from model plant species and the quantity of miRNAs has been functionally characterized in diverse plants. However, the molecular characterizations of the conserved miRNAs are still largely elusive in wheat. In this study, 32 wheat miRNAs (TaMIRs) currently released in the Sanger miRBase (the microRNA database) were selected to evaluate the expression patterns under conditions of non-stress (CK) and salt stress treatment. Based on the analysis of semiquantitative RT-PCR and quantitative real qRT-PCR, TaMIR159a, TaMIR160, TaMIR167, TaMIR174, TaMIR399, TaMIR408, TaMIR11124 and TaMIR1133 were found to have responses to salinity stress, with an upregulated pattern under salt stress treatment. Based on a BLAST search against the NCBI GenBank database, the potential targets of the salt-inducible wheat miRNAs were predicted. Except for TaMIR399 not being identified to have the putative target genes, other salt-inducible TaMIRs were found to possess 2 to 7 putative target genes. Together, our results suggest that a subset of miRNAs are involved in the mediation of salt stress signaling responses in wheat via their roles on the regulation of acted target genes at post-transcriptional and translation levels.
. Expression pattern of wheat miRNAs under salinity stress and prediction of salt-inducible miRNAs targets[J]. Frontiers of Agriculture in China, 0, (): 413-422.
Wenjing LU, Jincai LI, Fangpeng LIU, Juntao GU, Chengjin GUO, Liu XU, Huiyan ZHANG, Kai XIAO. Expression pattern of wheat miRNAs under salinity stress and prediction of salt-inducible miRNAs targets. Front Agric Chin, 0, (): 413-422.
SnRK3.23, ATCIPK23, CIPK23 (CBL-INTERACTING PROTEIN KINASE 23); kinase [Arabidopsis thaliana]
9e-08
Contig6025
18/18 (100%)
1e-3
Query: 5-22 corresponding to Subject: 3354-3440
AT1G63130.1
pentatricopeptide (PPR) repeat-containing protein [Arabidopsis thaliana]
2e-84
Contig4016
18/18 (100%)
1e-3
Query: 2-19 corresponding to Subject: 3327-3510
AAK63878.1
Putative salt-inducible protein [Oryza sativa]
0.0
tp1b0009d21
16/16 (100%)
1.7e-3
Query: 4-19 corresponding to Subject: 923-908
No hit
tp1b0016j06
15/15 (100%)
6.6e-03
Query: 4-18 corresponding to Subject: 3406-3392
AAX95848.1
NB-ARC domain, putative [Oryza sativa]
0.0
Tab.3
1
Aukerman M J, Sakai H (2003). Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell , 15(11): 2730-2741 doi: 10.1105/tpc.016238
2
Axtell M J, Snyder J A, Bartel D P (2007). Common functions for diverse small RNAs of land plants. Plant Cell , 19(6): 1750-1769 doi: 10.1105/tpc.107.051706
3
Chen S L, Polle A (2010). Salinity tolerance of Populus. Plant Biol (Stuttg) , 12(2): 317-333 doi: 10.1111/j.1438-8677.2009.00301.x
4
Chen X (2004). A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science , 303(5666): 2022-2025 doi: 10.1126/science.1088060
5
Cui Q, Yu Z, Purisima E O, Wang E (2006). Principles of microRNA regulation of a human cellular signaling network. Mol Syst Biol , 2: 46 doi: 10.1038/msb4100089
6
Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y (2009). Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot (Lond) , 103(1): 29-38 doi: 10.1093/aob/mcn205
7
FAO (2010). FAO Land and Plant Nutrition Management Service. 2008, http://www.fao.org/ag/agl/agll/spush (October29, 2010)
8
Floyd S K, Bowman J L (2004). Gene regulation: ancient microRNA target sequences in plants. Nature , 428(6982): 485-486 doi: 10.1038/428485a
9
Griffiths-Jones S, Saini H K, van Dongen S, Enright A J (2008). miRBase: tools for microRNA genomics. Nucleic Acids Res , 36 (Database issue): D154-D158
10
Han Y, Luan F, Zhu H, Shao Y, Chen A, Lu C, Luo Y, Zhu B (2009). Computational identification of microRNAs and their targets in wheat (Triticum aestivum L.). Science in China C series—Life Sci , 52(11): 1091-1100
11
Kong Y, Elling A A, Chen B, Deng X W (2010). Differential expression of microRNAs in maize inbred and hybrid lines during salt and drought stress. American Journal of Plant Sciences , 1(2): 69-76 doi: 10.4236/ajps.2010.12009
12
Laufs P, Peaucelle A, Morin H, Traas J (2004). MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development , 131(17): 4311-4322 doi: 10.1242/dev.01320
13
Livak K J, Schmittgen T D (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method. Methods , 25(4): 402-408
14
Lu S, Sun Y H, Chiang V L (2008). Stress-responsive microRNAs in Populus. Plant J , 55(1): 131-151 doi: 10.1111/j.1365-313X.2008.03497.x
15
Ma S, Gong Q, Bohnert H J (2006). Dissecting salt stress pathways. J Exp Bot , 57(5): 1097-1107 doi: 10.1093/jxb/erj098
16
Millar A A, Waterhouse P M (2005). Plant and animal microRNAs: similarities and differences. Funct Integr Genomics , 5(3): 129-135 doi: 10.1007/s10142-005-0145-2
17
Munns R (2005). Genes and salt tolerance: bringing them together. New Phytol , 167(3): 645-663 doi: 10.1111/j.1469-8137.2005.01487.x
Palatnik J F, Allen E, Wu X, Schommer C, Schwab R, Carrington J C, Weigel D (2003). Control of leaf morphogenesis by microRNAs. Nature , 425(6955): 257-263 doi: 10.1038/nature01958
20
Schwab R, Palatnik J F, Riester M, Schommer C, Schmid M, Weigel D (2005). Specific effects of microRNAs on the plant transcriptome. Dev Cell , 8(4): 517-527 doi: 10.1016/j.devcel.2005.01.018
21
Shukla L I, Chinnusamy V, Sunkar R (2008). The role of microRNAs and other endogenous small RNAs in plant stress responses. Biochim Biophys Acta , 1779(11): 743-748
22
Sunkar R, Kapoor A, Zhu J K (2006). Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell , 18(8): 2051-2065 doi: 10.1105/tpc.106.041673
23
Sunkar R, Zhou X, Zheng Y, Zhang W, Zhu J K (2008). Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol , 8(1): 25 doi: 10.1186/1471-2229-8-25
24
Sunkar R, Zhu J K (2004). Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell , 16(8): 2001-2019 doi: 10.1105/tpc.104.022830
25
Vinocur B, Altman A (2005). Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol , 16(2): 123-132 doi: 10.1016/j.copbio.2005.02.001
26
Wei B, Cai T, Zhang R, Li A, Huo N, Li S, Gu Y Q, Vogel J, Jia J, Qi Y, Mao L (2009). Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat (Triticum aestivum L.) and Brachypodium distachyon (L.) Beauv. Funct Integr Genomics , 9(4): 499-511 doi: 10.1007/s10142-009-0128-97
27
Williams L, Grigg S P, Xie M, Christensen S, Fletcher J C (2005). Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes. Development , 132(16): 3657-3668 doi: 10.1242/dev.01942
28
Xin M, Wang Y, Yao Y, Xie C, Peng H, Ni Z, Sun Q (2010). Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biol , 10(1): 123 doi: 10.1186/1471-2229-10-123
29
Yamaguchi T, Blumwald E (2005). Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci , 10(12): 615-620 doi: 10.1016/j.tplants.2005.10.002
30
Yao Y, Guo G, Ni Z, Sunkar R, Du J, Zhu J K, Sun Q (2007). Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biol , 8(6): R96 doi: 10.1186/gb-2007-8-6-r96
31
Yin Z J, Shen F F (2010). Identification and characterization of conserved microRNAs and their target genes in wheat (Triticum aestivum). Genet Mol Res , 9(2): 1186-1196 doi: 10.4238/vol9-2gmr805
32
Zhang H, Guo C, Li C, Xiao K (2008). Cloning, characterizatio and expression analysis of two superoxide dismutase (SOD) genes in wheat (Triticum aestivum L.). Front Agric China , 2(2): 141-149 doi: 10.1007/s11703-008-0023-5
33
Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H, Ruan K, Jin Y (2007). Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun , 354(2): 585-590 doi: 10.1016/j.bbrc.2007.01.022