Please wait a minute...
Frontiers of Agriculture in China

ISSN 1673-7334

ISSN 1673-744X(Online)

CN 11-5729/S

Frontiers of Agriculture in China  2011, Vol. 5 Issue (4): 456-462   https://doi.org/10.1007/s11703-011-1079-1
  RESEARCH ARTICLE 本期目录
The candidate QTLs affecting phosphorus absorption efficiency and root weight in maize (Zea mays L.)
The candidate QTLs affecting phosphorus absorption efficiency and root weight in maize (Zea mays L.)
Junyi CHEN(), Li XU
Institute of Medical Biotechnology in Chongqing, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
 全文: PDF(245 KB)   HTML
Abstract

A maize F2 population was first used to construct a genetic linkage map of Chromosome 6 covering 117.6 cM with an average interval of 3.68 cM between adjacent markers. Based on composite interval mapping (CIM), the quantitative trait loci (QTL) for phosphorus absorption efficiency (PAE) and root-related traits was detected in four environments, i.e., Kaixian County under deficient phosphorus (KXDP), Kaixian County under normal phosphorus (KXNP), SUDP1, and SUDP2. QTLs affecting root weight (RW) were detected simultaneously at the dupssr15 locus region (bin 6.06) on Chromosome 6 in the four environments, while QTL affecting taproot length and fiber number was only detected in one or two environments. The result suggested that taproot length and fiber number were more easily affected by the environment than PAE and RW. The alleles originating from 082 increased PAE and RW on Chromosome 6. The QTL on bin 6.06 explained 4%–10% and 4%–8% of the total phenotypic variance of PAE and RW, respectively, and the estimates of the genetic effects presented dominance and overdominance. The QTL for RW in the dupssr15 locus is the minor QTLs environment interactive effects, which should be particularly useful in MAS manipulation of breeding maize.

Key wordsmaize    QTL analysis    candidate QTLs    phosphorus absorption efficiency    root-related traits    four environments
收稿日期: 2009-06-23      出版日期: 2011-12-05
Corresponding Author(s): CHEN Junyi,Email:chenjunyi3@126.com   
 引用本文:   
. The candidate QTLs affecting phosphorus absorption efficiency and root weight in maize (Zea mays L.)[J]. Frontiers of Agriculture in China, 2011, 5(4): 456-462.
Junyi CHEN, Li XU. The candidate QTLs affecting phosphorus absorption efficiency and root weight in maize (Zea mays L.). Front Agric Chin, 2011, 5(4): 456-462.
 链接本文:  
https://academic.hep.com.cn/fag/CN/10.1007/s11703-011-1079-1
https://academic.hep.com.cn/fag/CN/Y2011/V5/I4/456
EnvironmentsTraitsParentsF2∶3 families
082Ye107DifferenceMeanRangeσ^G2σ^E2hb2(%)
KXNPPAE-KXNP4.322.112.21**3.061.35-4.880.6030.086187.5
RW-KXNP5.022.352.67**3.681.85-5.320.44380.120878.6
RL-KXNP20.5412.857.69*16.718.84-22.175.05521.240280.3
FN-KXNP25417579*201.64104-277811.9733241.169877.1
KXDPPAE-KXDP3.231.22.03**2.240.84-4.070.6470.06590.9
RW-KXDP4.121.852.27**3.281.67-4.670.32910.080280.4
RL-KXDP17.6510.127.53**15.268.00-20.654.60611.239278.8
FN-KXDP22112497*18596-25971823275.6
SUDP1PAE-SUDP13.41.262.14**2.290.86-4.150.6880.06291.8
RW-SUDP15.132.043.09**3.361.66-5.540.63580.141581.8
RL-SUDP118.2413.215.03*15.4610.68-20.833.50081.039877.1
FN-SUDP123415876*183122-25856820173.8
SUDP2PAE-SUDP24.482.252.23**3.541.80-5.040.38390.038990.8
RW-SUDP25.252.522.73**5.93.00-8.41.06650.271679.7
RL-SUDP232.1525.556.6*30.3519.78-42.3119.56346.144176.1
FN-SUDP2388286102**334.57220-4692084.7124665.567875.8
Tab.1  
TraitsSource of variationSSDegree of freedomF value
PAEGenotypes507.2224034.01**
Environments286.7731538.17**
Error44.74720
Total variation838.73963
RWGenotypes538.3924029.02**
Environments1112.0834795.05**
Error55.66720
Total variation1706.13963
RLGenotypes5528.362407.13**
Environments38532.9433976.32**
Error2325.74720
Total variation46387.04963
FNGenotypes853073.1024016.97**
Environments3820885.0036079.56**
Error150835.40720
Total variation4824794.00963
Tab.2  
TraitsPAERWRL
RW0.9539**
RL0.7936**0.8089**
FN0.8631**0.9088**0.9410**
Tab.3  
NameCQPInterval markersClosest markerBinsLODR2 (%)TR2 (%)ADGADir
PAE6-SUDP2698.3dupssr15- P1M7/adupssr156.063.16340.15420.0981PD082
PAE2-KXNP246.0umc1185- umc1555umc11852.032.56212-0.13560.3246ODYe107
PAE6-KXNP698.3dupssr15- P1M7/adupssr156.063.32490.21130.0982PD082
PAE9-KXNP986.6P1M3/d- P1M3/gP1M3/g9.042.562110.16030.2409OD082
PAE6-KXDP698.3dupssr15- P1M7/adupssr156.062.53390.19300.0850PD082
PAE9-KXDP986.6P1M3/d- P1M3/gP1M3/g9.042.51280.13600.2790OD082
RW6-SUDP2698.3dupssr15- P1M7/adupssr156.063.16340.25700.1635PD082
RW6-KXNP698.3dupssr15- P1M7/adupssr156.063.31340.17620.1042PD082
RW6-KXDP698.3dupssr15- P1M7/adupssr156.063.16340.14280.0908PD082
RW6-SUDP1698.3dupssr15- P1M7/adupssr156.062.55380.20700.0632PD082
RL2-KXDP2202.3umc2184-umc2077umc21842.092.507120.8525-0.4424PD082
RL5-KXDP5225.4umc2136-umc2308umc23085.082.51714-0.85620.1103AYe107
RL6-KXDP634.8bnlg2191-umc1572bnlg21916.022.523100.4887-0.9058OD082
RL8-KXDP829.7umc1034a-umc1172umc11728.042.60150.30770.4169OD082
RL6-KXNP634.8bnlg2191-umc1572bnlg21916.022.681110.3870-0.9502OD082
RL5-SUDP25189.6umc1680-bnlg1118bnlg11185.072.64310-1.19132.6496ODYe107
FN7-KXDP779.8P3M7/k-umc1029P3M7/k7.042.753105.91380.1840A082
FN5-SUDP15189.6umc1680-bnlg1118bnlg11185.072.75311-6.631314.3741ODYe107
FN6-KXNP698.3dupssr15- P1M7/adupssr156.063.15377.48924.2827PD082
Tab.4  
Fig.1  
Fig.1  
1 Chen J, Cai Y L, Xu L, Wang J G, Zhang W L, Wang G Q, Xu D L, Chen T Q, Lu X G, Sun H Y, Huang A Y, Liang Y, Dai G L, Qin H N, Huang Z C, Zhu Z J, Yang Z G, Xu J, Kuang S F (2011). Identification of QTLs for biomass production in maize (Zea mays L.) under different phosphorus levels at two sites. Front Agric China , 5(2): 152-161
2 Chen J, Xu L (2011). Comparative mapping of QTLs for H+ secretion of root in maize (Zea mays L.) and cross phosphorus levels on two growth stages. Front Agric China , 5(3): 284-289
3 Chen J, Xu L, Cai Y, Xu J (2008). QTL mapping of phosphorus efficiency and relative biologic characteristics in maize(Zea mays L.)at two sites.Plant Soil , 313 (1-2): 251-266
doi: 10.1007/s11104-008-9698-x
4 Chen J, Xu L, Cai Y, Xu J (2009). Identification of QTLs for phosphorus utilization efficiency in maize (Zea mays L.) across P levels. Euphytica , 167(2): 245-252
doi: 10.1007/s10681-009-9883-x
5 Guingo E, RHébert Y, Charcosset A (1998). Genetic analysis of root traits in maize. Agronomie, 18L: 225-235
6 Helentjaris T, Wright S, Weber D (1986). Construction of a genetic linkage map in maize using restriction fragment polymorphisms. Maize Genet Coop News Lett , 60: 118-120
7 Hinsinger P (2001). Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil , 237(2): 173-195
doi: 10.1023/A:1013351617532
8 Hinsinger P, Gilkes R J (1996). Mobilization of phosphate from phosphate rock and alumina-sorbed phosphate by the roots of ryegrass and clover as related to rhizosphere pH. Eur J Soil Sci , 47(4): 533-544
doi: 10.1111/j.1365-2389.1996.tb01853.x
9 Kaeppler S M, Parke J L, Mueller S M, Senior L, Stuber C, Tracy W F (2000). Variation among maize inbred lines and detection of quantitative trait loci for growth at low phosphorus and responsiveness to arbuscular mycorrhizal fungi. Crop Sci , 40(2): 358-363
doi: 10.2135/cropsci2000.402358x
10 Kosambi D (1944). The estimation of map distances from recombination values. Ann Eugen , 12: 172-175
11 Stuber C W, Sisco P (1992). Marker-facilitated transfer of QTL alelles between elite inbred lines and responses in hybrids. Proc. 46th Annual Corn and Sorghum Research. Conference, Am. Seed Trade Assoc.,Washington, DC, USA . 104-113
12 Tuberosa R, Parentoni S, Kim T S, Sanguineti M C, Phillips R L (1998a). Mapping QTLs for ABA concentration in leaves of a maize cross segregating for anthesis date.Maize Genet Coop News Lett , 72: 72-73
13 Tuberosa R, Salvi S, Sanguineti M C, Maccaferri M, Giuliani S, Landi (2003). Searching for quantitative trait loci controlling root traits in maize: a critical appraisal.Plant and Soil , 255: 35-54
14 Tuberosa R, Sanguineti M C, Landi P, Giuliani M M, Salvi S, Conti S(2002). Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes.Plant Mol Biol , 47(5-6): 697-712
doi: 10.1023/A:1014897607670 pmid:11999844
15 Tuberosa R, Sanguineti M C, Landi P, Salvi S, Casarini E, Conti S (1998b). RFLP mapping of quantitative trait loci controlling abscisic acid concentration in leaves of drought-stressed maize (Zea mays L.).Theor Appl Genet , 97(5-6): 744-755
doi: 10.1007/s001220050951
16 Wu J X, Jenkins J N, McCarty J C, Zhong M, Swindle M (2007). AFLP marker associations with agronomic and fiber traits in cotton. Euphytica , 153(1-2): 153-163
17 Yan X, Liao H, Beebe S E, Blair M W, Lynch J P (2004). QTL mapping of root hair and acid exudation traits and their relationship to phosphorus uptake in common bean.Plant Soil , 265(1-2): 17-19
18 Zhu J, Kaeppler S M, Lynch J P (2005). Mapping of QTL controlling root hair length in maize (Zea mays L.) under deficient phosphorus.Plant Soil , 270: 299-310
doi: 10.1007/s11104-004-1697-y
19 Zhu J, Lynch J P (2004). The contribution of lateral rooting to phosphorus acquisition efficiency in maize (Zea mays L.) seedlings.Funct Plant Biol , 31(10): 949-958
doi: 10.1071/FP04046
20 Zuber M S (1996). Evaluation of corn root systems under various environments. Proc Annu Corn Sorghum Ind Res Conf , 23: 67-75
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed