Suppressor of cytokine signaling 1 (SOCS1) protein can inhibit the signal transduction triggered by some cytokines or hormones and thus are important in many physiological/pathological processes, including innate and adaptive immunity, inflammation, and development in mammals. However, there is sparse information about their structure, tissue expression, in birds, where their biological functions remain unknown. In this study, we cloned and characterized two SOCS1 genes (named cSOCS1a and cSOCS1b) from chickens. SOCS1a is predicted to encode a 207-amino acid protein, which shares high amino acid sequence identity (64%–67%) with human and mouse SOCS1. Besides SOCS1a, a novel SOCS1b gene was also identified in chickens and other non-mammalian vertebrates including Xenopus tropicalis. Chicken SOCS1b is predicted to encode a 212-amino acid protein, which shares only 30%–32% amino acid sequence identity with human SOCS1 and cSOCS1a. RT-PCR assay revealed that both cSOCS1a and cSOCS1b are widely expressed in all chicken tissues. Using a luciferase reporter assay system, we further demonstrated that transient expression of cSOCS1a and cSOCS1b can significantly inhibit chicken growth hormone (GH)- or prolactin (PRL)-induced luciferase activities of Hep G2 cells expressing cGH receptor (or cPRL receptor), indicating that SOCS1a and SOCS1b proteins can negatively regulate GH/PRL signaling. Taken together, these data suggest that both cSOCS1a and cSOCS1b may function as negative regulators of cytokine/hormone actions, such as modulation of GH/PRL actions in chickens.
Primers for rapid amplification of 5′-ends (5′-RACE)
cSOCS1a-L1
Antisense
TCCAGCAGGCTGCTTGCTCGAGTGA
cSOCS1a-L2
Antisense
CTTCTGCGTGCTGTCCCTGATGAGGA
cSOCS1b-L1
Antisense
AGCTGTCCCGCACCAGGTAGGTGCCA
cSOCS1b-L1
Antisense
AGTCGGCATCCGCACGCTCAGGCTGA
Primers for constructing the expression plasmidsb
cSOCS1a
Sense
CGGGGTACCGCTGGCCTAGGCTGTAGGAT
701
Antisense
CGGGAATTCACACATCTCTCACATGTCTCT
cSOCS1b
Sense
CGGGGTACCGGGATCCATGGGCTCTTTGA
724
Antisense
CGGGAATTCTCCAGCATGGCTGTGTGCAT
cGHR
Sense
CGGGGTACCTGCTGACATTTGAGAAT
1868
Antisense
CCGCTCGAGAATTGCTACGGCATGAT
cPRLR
Sense
CGGGGTACCAAGAGGAAGTGGAAATCATGA
2556
Antisense
CCGGAATTCTGTAGCATTACCTGATGAAGAG
Primers for RT-PCR assays
cSOCS1a
Sense
GCTGGCCTAGGCTGTAGGAT
688
Antisense
ACACATCTCTCACATGTCTCT
cSOCS1b
Sense
GGGATCCATGGGCTCTTTGA
710
Antisense
TCCAGCATGGCTGTGTGCAT
β-actin
Sense
TGTGCTACGTCGCACTGGAT
401
Antisense
GCTGATCCACATCTGCTGGA
Tab.1
Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
1
Krebs D L, Hilton D J. SOCS: physiological suppressors of cytokine signaling. Journal of Cell Science, 2000, 113(Pt 16): 2813-2819
pmid: 10910765
2
Alexander W S. Suppressors of cytokine signalling (SOCS) in the immune system. Nature Reviews Immunology, 2002, 2(6): 410-416
pmid: 12093007
3
Naka T, Narazaki M, Hirata M, Matsumoto T, Minamoto S, Aono A, Nishimoto N, Kajita T, Taga T, Yoshizaki K, Akira S, Kishimoto T. Structure and function of a new STAT-induced STAT inhibitor. Nature, 1997, 387(6636): 924-929
https://doi.org/10.1038/43219
pmid: 9202127
4
Endo T A, Masuhara M, Yokouchi M, Suzuki R, Sakamoto H, Mitsui K, Matsumoto A, Tanimura S, Ohtsubo M, Misawa H, Miyazaki T, Leonor N, Taniguchi T, Fujita T, Kanakura Y, Komiya S, Yoshimura A. A new protein containing an SH2 domain that inhibits JAK kinases. Nature, 1997, 387(6636): 921-924
https://doi.org/10.1038/43213
pmid: 9202126
5
Starr R, Willson T A, Viney E M, Murray L J, Rayner J R, Jenkins B J, Gonda T J, Alexander W S, Metcalf D, Nicola N A, Hilton D J. A family of cytokine-inducible inhibitors of signalling. Nature, 1997, 387(6636): 917-921
https://doi.org/10.1038/43206
pmid: 9202125
6
Yasukawa H, Misawa H, Sakamoto H, Masuhara M, Sasaki A, Wakioka T, Ohtsuka S, Imaizumi T, Matsuda T, Ihle J N, Yoshimura A. The JAK-binding protein JAB inhibits Janus tyrosine kinase activity through binding in the activation loop. EMBO Journal, 1999, 18(5): 1309-1320
https://doi.org/10.1093/emboj/18.5.1309
pmid: 10064597
7
Nicholson S E, Hilton D J. The SOCS proteins: a new family of negative regulators of signal transduction. Journal of Leukocyte Biology, 1998, 63(6): 665-668
pmid: 9620657
8
Hilton D J, Richardson R T, Alexander W S, Viney E M, Willson T A, Sprigg N S, Starr R, Nicholson S E, Metcalf D, Nicola N A. Twenty proteins containing a C-terminal SOCS box form five structural classes. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(1): 114-119
https://doi.org/10.1073/pnas.95.1.114
pmid: 9419338
9
Zhang J G, Metcalf D, Rakar S, Asimakis M, Greenhalgh C J, Willson T A, Starr R, Nicholson S E, Carter W, Alexander W S, Hilton D J, Nicola N A. The SOCS box of suppressor of cytokine signaling-1 is important for inhibition of cytokine action in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(23): 13261-13265
https://doi.org/10.1073/pnas.231486498
pmid: 11606785
10
Kamura T, Maenaka K, Kotoshiba S, Matsumoto M, Kohda D, Conaway R C, Conaway J W, Nakayama K I. VHL-box and SOCS-box domains determine binding specificity for Cul2-Rbx1 and Cul5-Rbx2 modules of ubiquitin ligases. Genes & Development, 2004, 18(24): 3055-3065
https://doi.org/10.1101/gad.1252404
pmid: 15601820
11
Yoshimura A, Naka T, Kubo M. SOCS proteins, cytokine signalling and immune regulation. Nature Reviews Immunology, 2007, 7(6): 454-465
https://doi.org/10.1038/nri2093
pmid: 17525754
12
Marine J C, Topham D J, McKay C, Wang D, Parganas E, Stravopodis D, Yoshimura A, Ihle J N. SOCS1 deficiency causes a lymphocyte-dependent perinatal lethality. Cell, 1999, 98(5): 609-616
https://doi.org/10.1016/S0092-8674(00)80048-3
pmid: 10490100
13
Naka T, Matsumoto T, Narazaki M, Fujimoto M, Morita Y, Ohsawa Y, Saito H, Nagasawa T, Uchiyama Y, Kishimoto T. Accelerated apoptosis of lymphocytes by augmented induction of Bax in SSI-1 (STAT-induced STAT inhibitor-1) deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(26): 15577-15582
https://doi.org/10.1073/pnas.95.26.15577
pmid: 9861011
14
Starr R, Metcalf D, Elefanty A G, Brysha M, Willson T A, Nicola N A, Hilton D J, Alexander W S. Liver degeneration and lymphoid deficiencies in mice lacking suppressor of cytokine signaling-1. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(24): 14395-14399
https://doi.org/10.1073/pnas.95.24.14395
pmid: 9826711
15
Hansen J A, Lindberg K, Hilton D J, Nielsen J H, Billestrup N. Mechanism of inhibition of growth hormone receptor signaling by suppressor of cytokine signaling proteins. Molecular Endocrinology, 1999, 13(11): 1832-1843
https://doi.org/10.1210/mend.13.11.0368
pmid: 10551777
16
Pezet A, Favre H, Kelly P A, Edery M. Inhibition and restoration of prolactin signal transduction by suppressors of cytokine signaling. The Journal of Biological Chemistry, 1999, 274(35): 24497-24502
https://doi.org/10.1074/jbc.274.35.24497
pmid: 10455112
17
Huang G, He C, Meng F, Li J, Zhang J, Wang Y. Glucagon-like peptide (GCGL) is a novel potential TSH-releasing factor (TRF) in Chickens: I) Evidence for its potent and specific action on stimulating TSH mRNA expression and secretion in the pituitary. Endocrinology, 2014, 155(11): 4568-4580
https://doi.org/10.1210/en.2014-1331
pmid: 25076122
18
Jin H J, Xiang L X, Shao J Z. Identification and characterization of suppressor of cytokine signaling 1 (SOCS-1) homologues in teleost fish. Immunogenetics, 2007, 59(8): 673-686
https://doi.org/10.1007/s00251-007-0232-8
pmid: 17569039
19
Jin H J, Shao J Z, Xiang L X, Wang H, Sun L L. Global identification and comparative analysis of SOCS genes in fish: insights into the molecular evolution of SOCS family. Molecular Immunology, 2008, 45(5): 1258-1268
https://doi.org/10.1016/j.molimm.2007.09.015
pmid: 18029016
20
Nie L, Xiong R, Zhang Y S, Zhu L Y, Shao J Z, Xiang L X. Conserved inhibitory role of teleost SOCS-1s in IFN signaling pathways. Developmental and Comparative Immunology, 2014, 43(1): 23-29
https://doi.org/10.1016/j.dci.2013.10.007
pmid: 24183820
21
Skjesol A, Liebe T, Iliev D B, Thomassen E I, Tollersrud L G, Sobhkhez M, Lindenskov Joensen L, Secombes C J, J?rgensen J B. Functional conservation of suppressors of cytokine signaling proteins between teleosts and mammals: Atlantic salmon SOCS1 binds to JAK/STAT family members and suppresses type I and II IFN signaling. Developmental and Comparative Immunology, 2014, 45(1): 177-189
https://doi.org/10.1016/j.dci.2014.02.009
pmid: 24582990
22
Bu G, Ying Wang C, Cai G, Leung F C, Xu M, Wang H, Huang G, Li J, Wang Y. Molecular characterization of prolactin receptor (cPRLR) gene in chickens: gene structure, tissue expression, promoter analysis, and its interaction with chicken prolactin (cPRL) and prolactin-like protein (cPRL-L). Molecular and Cellular Endocrinology, 2013, 370(1-2): 149-162
https://doi.org/10.1016/j.mce.2013.03.001
pmid: 23499864
23
Cocolakis E, Dai M, Drevet L, Ho J, Haines E, Ali S, Lebrun J J. Smad signaling antagonizes STAT5-mediated gene transcription and mammary epithelial cell differentiation. The Journal of Biological Chemistry, 2008, 283(3): 1293-1307
https://doi.org/10.1074/jbc.M707492200
pmid: 18024957
24
Bu G, Huang G, Fu H, Li J, Huang S, Wang Y. Characterization of the novel duplicated PRLR gene at the late-feathering K locus in Lohmann chickens. Journal of Molecular Endocrinology, 2013, 51(2): 261-276
https://doi.org/10.1530/JME-13-0068
pmid: 23940279
25
Frantsve J, Schwaller J, Sternberg D W, Kutok J, Gilliland D G. Socs-1 inhibits TEL-JAK2-mediated transformation of hematopoietic cells through inhibition of JAK2 kinase activity and induction of proteasome-mediated degradation. Molecular and Cellular Biology, 2001, 21(10): 3547-3557
https://doi.org/10.1128/MCB.21.10.3547-3557.2001
pmid: 11313480
26
Waiboci L W, Ahmed C M, Mujtaba M G, Flowers L O, Martin J P, Haider M I, Johnson H M. Both the suppressor of cytokine signaling 1 (SOCS-1) kinase inhibitory region and SOCS-1 mimetic bind to JAK2 autophosphorylation site: implications for the development of a SOCS-1 antagonist. Journal of Immunology, 2007, 178(8): 5058-5068
https://doi.org/10.4049/jimmunol.178.8.5058
pmid: 17404288
27
Bullock A N, Debreczeni J E, Edwards A M, Sundstr?m M, Knapp S. Crystal structure of the SOCS2-elongin C-elongin B complex defines a prototypical SOCS box ubiquitin ligase. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(20): 7637-7642
https://doi.org/10.1073/pnas.0601638103
pmid: 16675548
28
Van de Peer Y, Maere S, Meyer A. The evolutionary significance of ancient genome duplications. Nature Reviews Genetics, 2009, 10(10): 725-732
https://doi.org/10.1038/nrg2600
pmid: 19652647
29
Meyer A, Van de Peer Y. From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology. 2005, 27(9): 937-45
30
Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly P A. Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocrine Reviews, 1998, 19(3): 225-268
https://doi.org/10.1210/edrv.19.3.0334
pmid: 9626554
31
Harvey S, Gineste C, Gaylinn B D. Growth hormone (GH)-releasing activity of chicken GH-releasing hormone (GHRH) in chickens. General and Comparative Endocrinology, 2014, 204: 261-266
https://doi.org/10.1016/j.ygcen.2014.06.007
pmid: 24955880
32
Studzinski A L, Almeida D V, Lanes C F, Figueiredo M A, Marins L F. SOCS1 and SOCS3 are the main negative modulators of the somatotrophic axis in liver of homozygous GH-transgenic zebrafish (Danio rerio). General and Comparative Endocrinology, 2009, 161(1): 67-72
https://doi.org/10.1016/j.ygcen.2008.10.008
pmid: 18955058