Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

邮发代号 80-906

Frontiers of Agricultural Science and Engineering  2015, Vol. 2 Issue (1): 90-99   https://doi.org/10.15302/J-FASE-2015045
  本期目录
Metabonomic study of the biochemical profiles of heterozygous myostatin knockout swine
Jianxiang XU1,Dengke PAN2,Jie ZHAO1,Jianwu WANG1,Xiaohong HE2,Yuehui MA2,Ning LI1,*()
1. State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China
2. Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
 全文: PDF(1162 KB)   HTML
Abstract

Myostatin is a transforming growth factor-β family member that normally acts to limit skeletal muscle growth. Myostatin gene (MSTN) knockout (KO) mice show possible effects for the prevention or treatment of metabolic disorders such as obesity and type 2 diabetes. We applied chromatography and mass spectrometry based metabonomics to assess system-wide metabolic response of heterozygous MSTN KO (MSTN+/-) swine. Most of the metabolic data for MSTN+/- swine were similar to the data for wild type (WT) control swine. There were, however, metabolic changes related to fatty acid metabolism, glucose utilization, lipid metabolism, as well as BCAA catabolism caused by monoallelic MSTN depletion.The statistical analyses suggested that: (1) most metabolic changes were not significant in MSTN+/- swine compared to WT swine; (2) only a few metabolic properties were significantly different between KO and WT swine, especially for lipid metabolism. Significantly, these minor changes were most evident in female KO swine and suggested differences in gender sensitivity to myostatin.

Key wordsmyostatin    transforming growth factor-β family    skeletal muscle    metabolic disorders    chromatography    mass spectrometry    metabonomics
收稿日期: 2015-02-04      出版日期: 2015-05-22
Corresponding Author(s): Ning LI   
 引用本文:   
. [J]. Frontiers of Agricultural Science and Engineering, 2015, 2(1): 90-99.
Jianxiang XU,Dengke PAN,Jie ZHAO,Jianwu WANG,Xiaohong HE,Yuehui MA,Ning LI. Metabonomic study of the biochemical profiles of heterozygous myostatin knockout swine. Front. Agr. Sci. Eng. , 2015, 2(1): 90-99.
 链接本文:  
https://academic.hep.com.cn/fase/CN/10.15302/J-FASE-2015045
https://academic.hep.com.cn/fase/CN/Y2015/V2/I1/90
Group Sample Bodyweight (mean±SD)/kg Generation Description
WT Male (n = 11) 114.36±4.02 F1 Wild type adult swine (MSTN +/+)
Female (n = 3) 113.92±5.40
KO Male (n = 7) 113.74±5.35 F1 Heterozygous MSTN KO adult swine (MSTN+/-)
Female (n = 5) 114.43±5.24
Tab.1  
Fig.1  
Item KO (MSTN+/-) WT (MSTN +/+) P
Male Female Male Female Male Female
WBC/( × 109·L-1) 20.8 (4.8) 23.5 (1.0) 26.1 (6.8) 25.4 (7.4) 0.0923 0.6984
RBC/( × 1012·L-1) 6.3 (0.8) 6.9 (0.5) 6.9 (0.5) 6.0 (0.7) 0.1446 0.1387
HGB/(g·L-1) 106 (12.8) 120.2 (7.8) 117.8 (3.8) 107 0.0 (15.9) 0.0742 0.2838
HCT/% 34.7 (4.4) 39.1 (2.9) 38.1 (2.0) 34.3 (4.1) 0.1221 0.1666
MCV/fL 54.9 (1.2) 56.4 (2.5) 55.2 (2.4) 56.7 (1.0) 0.7692 0.8638
MCH/pg 16.8 (1.0) 17.4 (1.1) 17.1 (1.2) 17.6 (0.7) 0.5846 0.7050
MCHC/(g·L-1) 307 (22.9) 308 (10.3) 310.3 (15.2) 312.0 (15.0) 0.7272 0.7094
PLT/( × 109·L-1) 228 (119.7) 321 (103.7) 329.1 (103.2) 351.7 (92.4) 0.1933 0.6870
TBIL/(mmol·L-1) 3.57 (2.44) 4.80 (3.11) 3.10 (1.91) 1.00 (0) 0.6773 0.0525
DBIL/(mmol·L-1) 12.14 (1.46) 12.80 (2.17) 12.60 (1.17) 11.33 (0.58) 0.5067 0.2135
ALT/(U·L-1) 56.43 (11.31)a 69.60 (9.91) 71.70 (9.15)a 58.00 (7.21) 0.0128 0.1091
AST/(U·L-1) 113.00 (83.66) 83.20 (7.76) 121.40 (63.12) 71.33 (34.02) 0.8265 0.6091
TP/(g·L-1) 63.03 (8.08) 69.82 (2.19) 73.24 (5.75) 71.23 (9.38) 0.0164 0.8200
ALB/GLO 1.51 (0.32) 1.60 (0.19) 1.43 (0.17) 1.27 (0.24) 0.5586 0.1297
GGT/(U·L-1) 37.14 (9.42) 110.80 (40.54) 40.90 (16.35) 40.33 (19.09) 0.5587 0.0164
ALP/(U·L-1) 19.43 (17.92) 10.00 (7.91) 11.40 (7.03) 5.33 (3.21) 0.2956 0.2895
BUN/(mmol·L-1) 4.06 (1.45) 4.61 (0.45) 4.55 (0.90) 4.85 (1.25) 0.4515 0.7780
CRE/(mmol·L-1) 156 (17.72) 152 (10.92) 145 (19.46) 152 (28.36) 0.2551 0.9972
GLU/(mmol·L-1) 4.27 (1.81) 3.43 (0.67) 4.62 (1.32) 3.99 (0.43) 0.6700 0.2018
TG/(mmol·L-1) 0.56 (0.24) 0.52 (0.13) 0.40 (0.09) 0.36 (0.12) 0.1367 0.1372
CHO/(mmol·L-1) 1.94 (0.33) 2.33 (0.15) 2.08 (0.19) 2.10 (0.15) 0.3294 0.0899
CK/(U·L-1) 2215 (750.5) 2014.00 (1121.3) 1726 (769.7) 758 (321.9) 0.2122 0.0659
LDH/(U·L-1) 731 (221.3)a 894 (78.3)b 1170 (531.3)a 475 (42.0)b 0.0362 0.0001
AMY/(U·L-1) 2442 (962.5) 3160 (1126.1) 2179 (1028.3) 1857 (976.0) 0.5989 0.1463
Tab.2  
Biochemicals KO/WT KO-M/WT-M KO-F/WT-F
Total (P≤0.05) 43 10 35
Fold of change≥1.00 29 2 25
Fold of change<1.00 14 8 10
Tab.3  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
1 Nicholson J K, Connelly J, Lindon J C, Holmes E. Metabonomics: a platform for studying drug toxicity and gene function. Nature Reviews Drug Discovery, 2002, 1(2): 153–161
https://doi.org/10.1038/nrd728 pmid: 12120097
2 Nicholson J K, Lindon J C, Holmes E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 1999, 29(11): 1181–1189
https://doi.org/10.1080/004982599238047 pmid: 10598751
3 Holmes E, Nicholls A W, Lindon J C, Ramos S, Spraul M, Neidig P, Connor S C, Connelly J, Damment S J, Haselden J, Nicholson J K. Development of a model for classification of toxin-induced lesions using 1H NMR spectroscopy of urine combined with pattern recognition. NMR in Biomedicine, 1998, 11(4–5): 235–244
https://doi.org/10.1002/(SICI)1099-1492(199806/08)11:4/5<235::AID-NBM507>3.0.CO;2-V pmid: 9719578
4 Beckwith-Hall B M, Nicholson J K, Nicholls A W, Foxall P J, Lindon J C, Connor S C, Abdi M, Connelly J, Holmes E. Nuclear magnetic resonance spectroscopic and principal components analysis investigations into biochemical effects of three model hepatotoxins. Chemical Research in Toxicology, 1998, 11(4): 260–272
https://doi.org/10.1021/tx9700679 pmid: 9548796
5 Robertson D G, Reily M D, Sigler R E, Wells D F, Paterson D A, Braden T K. Metabonomics: evaluation of nuclear magnetic resonance (NMR) and pattern recognition technology for rapid in vivo screening of liver and kidney toxicants. Toxicological Sciences, 2000, 57(2): 326–337
https://doi.org/10.1093/toxsci/57.2.326 pmid: 11006362
6 Williams R E, Cottrell L, Jacobsen M, Bandara L R, Kelly M D, Kennedy S, Lock E A. 1H-Nuclear magnetic resonance pattern recognition studies with N-phenylanthranilic acid in the rat: time- and dose-related metabolic effects. Biomarkers, 2003, 8(6): 472–490
https://doi.org/10.1080/13547500310001647030 pmid: 15195679
7 Idborg-Bj?rkman H, Edlund P O, Kvalheim O M, Schuppe-Koistinen I, Jacobsson S P. Screening of biomarkers in rat urine using LC/electrospray ionization-MS and two-way data analysis. Analytical Chemistry, 2003, 75(18): 4784–4792
https://doi.org/10.1021/ac0341618 pmid: 14674455
8 Lenz E M, Bright J, Knight R, Wilson I D, Major H. A metabonomic investigation of the biochemical effects of mercuric chloride in the rat using 1H NMR and HPLC-TOF/MS: time dependent changes in the urinary profile of endogenous metabolites as a result of nephrotoxicity. Analyst, 2004, 129(6): 535–541
https://doi.org/10.1039/b400159c pmid: 15152332
9 Lamers R J, van Nesselrooij J H, Kraus V B, Jordan J M, Renner J B, Dragomir A D, Luta G, van der Greef J, DeGroot J. Identification of an urinary metabolite profile associated with osteoarthritis. Osteoarthritis and Cartilage, 2005, 13(9): 762–768
https://doi.org/10.1016/j.joca.2005.04.005 pmid: 15951202
10 Brindle J T, Antti H, Holmes E, Tranter G, Nicholson J K, Bethell H W, Clarke S, Schofield P M, McKilligin E, Mosedale D E, Grainger D J. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nature Medicine, 2002, 8(12): 1439–1444
https://doi.org/10.1038/nm1202-802 pmid: 12447357
11 Yang J, Xu G, Hong Q, Liebich H M, Lutz K, Schmülling R M, Wahl H G. Discrimination of type 2 diabetic patients from healthy controls by using metabonomics method based on their serum fatty acid profiles. Journal of Chromatography B, 2004, 813(1–2): 53– 58
https://doi.org/10.1016/j.jchromb.2004.09.023 pmid: 15556515
12 Robertson D G, Reily M D, Baker J D. Metabonomics in pharmaceutical discovery and development. Journal of Proteome Research, 2007, 6(2): 526–539
https://doi.org/10.1021/pr060535c pmid: 17269709
13 Louden D, Handley A, Taylor S, Lenz E, Miller S, Wilson I D, Sage A. Reversed-phase high-performance liquid chromatography combined with on-line UV diode array, FT infrared, and 1H nuclear magnetic resonance spectroscopy and time-of-flight mass spectrometry: application to a mixture of nonsteroidal antiinflammatory drugs. Analytical Chemistry, 2000, 72(16): 3922–3926
https://doi.org/10.1021/ac000204y pmid: 10959983
14 Plumb R S, Stumpf C L, Gorenstein M V, Castro-Perez J M, Dear G J, Anthony M, Sweatman B C, Connor S C, Haselden J N. Metabonomics: the use of electrospray mass spectrometry coupled to reversed-phase liquid chromatography shows potential for the screening of rat urine in drug development. Rapid Communications in Mass Spectrometry, 2002, 16(20): 1991–1996
https://doi.org/10.1002/rcm.813 pmid: 12362392
15 Lenz E M, Bright J, Knight R, Wilson I D, Major H. Cyclosporin A-induced changes in endogenous metabolites in rat urine: a metabonomic investigation using high field 1H NMR spectroscopy, HPLC-TOF/MS and chemometrics. Journal of Pharmaceutical and Biomedical Analysis, 2004, 35(3): 599–608
https://doi.org/10.1016/j.jpba.2004.02.013 pmid: 15137985
16 Piccioni F, Capitani D, Zolla L, Mannina L. NMR metabolic profiling of transgenic maize with the Cry1Ab gene. Journal of Agricultural and Food Chemistry, 2009, 57(14): 6041–6049
https://doi.org/10.1021/jf900811u pmid: 19545151
17 Chassy B M. Can-omics inform a food safety assessment? Regulatory Toxicology and Pharmacology, 2010, 58(3 Suppl): S62–S70
https://doi.org/10.1016/j.yrtph.2010.05.009 pmid: 20580918
18 Raamsdonk L M, Teusink B, Broadhurst D, Zhang N, Hayes A, Walsh M C, Berden J A, Brindle K M, Kell D B, Rowland J J, Westerhoff H V, van Dam K, Oliver S G. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nature Biotechnology, 2001, 19(1): 45–50
https://doi.org/10.1038/83496 pmid: 11135551
19 Delneri D, Brancia F L, Oliver S G, Brancia F L. Towards a truly integrative biology through the functional genomics of yeast. Current Opinion in Biotechnology, 2001, 12(1): 87–91
https://doi.org/10.1016/S0958-1669(00)00179-8 pmid: 11167079
20 Fiehn O, Kopka J, D?rmann P, Altmann T, Trethewey R N, Willmitzer L. Metabolite profiling for plant functional genomics. Nature Biotechnology, 2000, 18(11): 1157–1161
https://doi.org/10.1038/81137 pmid: 11062433
21 Gavaghan C L, Holmes E, Lenz E, Wilson I D, Nicholson J K. An NMR-based metabonomic approach to investigate the biochemical consequences of genetic strain differences: application to the C57BL10J and Alpk:ApfCD mouse. FEBS Letters, 2000, 484(3): 169–174
https://doi.org/10.1016/S0014-5793(00)02147-5 pmid: 11078872
22 Lenz E M, Bright J, Wilson I D, Hughes A, Morrisson J, Lindberg H, Lockton A. Metabonomics, dietary influences and cultural differences: a 1H NMR-based study of urine samples obtained from healthy British and Swedish subjects. Journal of Pharmaceutical and Biomedical Analysis, 2004, 36(4): 841–849
https://doi.org/10.1016/j.jpba.2004.08.002 pmid: 15533678
23 Williams R E, Lenz E M, Rantalainen M, Wilson I D. The comparative metabonomics of age-related changes in the urinary composition of male Wistar-derived and Zucker (fa/fa) obese rats. Molecular BioSystems, 2006, 2(3–4): 193–202
https://doi.org/10.1039/b517195d pmid: 16880937
24 Williams R E, Lenz E M, Lowden J S, Rantalainen M, Wilson I D. The metabonomics of aging and development in the rat: an investigation into the effect of age on the profile of endogenous metabolites in the urine of male rats using 1H NMR and HPLC-TOF MS. Molecular BioSystems, 2005, 1(2): 166–175
https://doi.org/10.1039/b500852b pmid: 16880980
25 Tate A R, Damment S J, Lindon J C. Investigation of the metabolite variation in control rat urine using 1H NMR spectroscopy. Analytical Biochemistry, 2001, 291(1): 17–26
https://doi.org/10.1006/abio.2001.5008 pmid: 11262152
26 Bollard M E, Holmes E, Lindon J C, Mitchell S C, Branstetter D, Zhang W, Nicholson J K. Investigations into biochemical changes due to diurnal variation and estrus cycle in female rats using high-resolution 1H NMR spectroscopy of urine and pattern recognition. Analytical Biochemistry, 2001, 295(2): 194–202
https://doi.org/10.1006/abio.2001.5211 pmid: 11488622
27 Gavaghan C L, Wilson I D, Nicholson J K. Physiological variation in metabolic phenotyping and functional genomic studies: use of orthogonal signal correction and PLS-DA. FEBS Letters, 2002, 530(1–3): 191–196
https://doi.org/10.1016/S0014-5793(02)03476-2 pmid: 12387891
28 Griffin J L, Walker L A, Garrod S, Holmes E, Shore R F, Nicholson J K. NMR spectroscopy based metabonomic studies on the comparative biochemistry of the kidney and urine of the bank vole (Clethrionomys glareolus), wood mouse (Apodemus sylvaticus), white toothed shrew (Crocidura suaveolens) and the laboratory rat. Comparative Biochemistry and Physiology Part B: Biochemistry & Molecular Biology, 2000, 127(3): 357–367
https://doi.org/10.1016/S0305-0491(00)00276-5 pmid: 11126766
29 Holmes E, Nicholson J K, Tranter G. Metabonomic characterization of genetic variations in toxicological and metabolic responses using probabilistic neural networks. Chemical Research in Toxicology, 2001, 14(2): 182–191
https://doi.org/10.1021/tx000158x pmid: 11258967
30 Gavaghan McKee C L, Wilson I D, Nicholson J K. Metabolic phenotyping of nude and normal (Alpk:ApfCD, C57BL10J) mice. Journal of proteome research, 2006, 5(2): 378–384
https://doi.org/10.1021/pr050255h pmid: 16457604
31 McPherron A C, Lawler A M, Lee S J. Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member. Nature, 1997, 387(6628): 83–90
https://doi.org/10.1038/387083a0 pmid: 9139826
32 Lee S J. Regulation of muscle mass by myostatin. Annual Review of Cell and Developmental Biology, 2004, 20(1): 61–86
https://doi.org/10.1146/annurev.cellbio.20.012103.135836 pmid: 15473835
33 Lin J, Arnold H B, Della-Fera M A, Azain M J, Hartzell D L, Baile C A. Myostatin knockout in mice increases myogenesis and decreases adipogenesis. Biochemical and Biophysical Research Communications, 2002, 291(3): 701–706
https://doi.org/10.1006/bbrc.2002.6500 pmid: 11855847
34 Rebbapragada A, Benchabane H, Wrana J L, Celeste A J, Attisano L. Myostatin signals through a transforming growth factor β-like signaling pathway to block adipogenesis. Molecular and Cellular Biology, 2003, 23(20): 7230–7242
https://doi.org/10.1128/MCB.23.20.7230-7242.2003 pmid: 14517293
35 Bogdanovich S, Krag T O, Barton E R, Morris L D, Whittemore L A, Ahima R S, Khurana T S. Functional improvement of dystrophic muscle by myostatin blockade. Nature, 2002, 420(6914): 418– 421
https://doi.org/10.1038/nature01154 pmid: 12459784
36 Bogdanovich S, Perkins K J, Krag T O, Whittemore L A, Khurana T S. Myostatin propeptide-mediated amelioration of dystrophic pathophysiology. FASEB Journal, 2005, 19(6): 543–549
https://doi.org/10.1096/fj.04-2796com pmid: 15791004
37 Wagner K R, McPherron A C, Winik N, Lee S J. Loss of myostatin attenuates severity of muscular dystrophy in mdx mice. Annals of Neurology, 2002, 52(6): 832–836
https://doi.org/10.1002/ana.10385 pmid: 12447939
38 McPherron A C, Lee S J. Suppression of body fat accumulation in myostatin-deficient mice. Journal of Clinical Investigation, 2002, 109(5): 595–601
https://doi.org/10.1172/JCI0213562 pmid: 11877467
39 Lee S J. Quadrupling muscle mass in mice by targeting TGF-β signaling pathways. PLoS ONE, 2007, 2(8): e789
https://doi.org/10.1371/journal.pone.0000789 pmid: 17726519
40 Grobet L, Martin L J, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Ménissier F, Massabanda J, Fries R, Hanset R, Georges M. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nature Genetics, 1997, 17(1): 71–74
https://doi.org/10.1038/ng0997-71 pmid: 9288100
41 Kambadur R, Sharma M, Smith T P, Bass J J. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Research, 1997, 7(9): 910–916
pmid: 9314496
42 McPherron A C, Lee S J. Double muscling in cattle due to mutations in the myostatin gene. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(23): 12457–12461
https://doi.org/10.1073/pnas.94.23.12457 pmid: 9356471
43 Grobet L, Poncelet D, Royo L J, Brouwers B, Pirottin D, Michaux C, Ménissier F, Zanotti M, Dunner S, Georges M. Molecular definition of an allelic series of mutations disrupting the myostatin function and causing double-muscling in cattle. Mammalian Genome, 1998, 9(3): 210–213
https://doi.org/10.1007/s003359900727 pmid: 9501304
44 Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibé B, Bouix J, Caiment F, Elsen J M, Eychenne F, Larzul C, Laville E, Meish F, Milenkovic D, Tobin J, Charlier C, Georges M. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nature Genetics, 2006, 38(7): 813–818
https://doi.org/10.1038/ng1810 pmid: 16751773
45 Mosher D S, Quignon P, Bustamante C D, Sutter N B, Mellersh C S, Parker H G, Ostrander E A. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLOS Genetics, 2007, 3(5): e79
https://doi.org/10.1371/journal.pgen.0030079 pmid: 17530926
46 Schuelke M, Wagner K R, Stolz L E, Hübner C, Riebel T, K?men W, Braun T, Tobin J F, Lee S J. Myostatin mutation associated with gross muscle hypertrophy in a child. New England Journal of Medicine, 2004, 350(26): 2682–2688
https://doi.org/10.1056/NEJMoa040933 pmid: 15215484
47 Li H, 2, Feng C, Wang N, Yan J, Ha F, Chen H, Fan B, Pan D. Construction of a myostatin gene-targeting vector and myostatin gene knockout of porcine fetal fibroblasts cells. Letters in Biotechnology, 2010, 21(5): 699–704
48 Pan D, Zhang L, Zhou Y, Feng C, Long C, Liu X, Wan R, Zhang J, Lin A, Dong E, Wang S, Xu H, Chen H. Efficient production of omega-3 fatty acid desaturase (sFat-1)-transgenic pigs by somatic cell nuclear transfer. Life Sciences, 2010, 53(4): 517–523
https://doi.org/10.1007/s11427-010-0080-x pmid: 20596920
49 Lawton K A, Berger A, Mitchell M, Milgram K E, Evans A M, Guo L, Hanson R W, Kalhan S C, Ryals J A, Milburn M V. Analysis of the adult human plasma metabolome. Pharmacogenomics, 2008, 9(4): 383–397
https://doi.org/10.2217/14622416.9.4.383 pmid: 18384253
50 Evans A M, DeHaven C D, Barrett T, Mitchell M, Milgram E. Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Analytical Chemistry, 2009, 81(16): 6656–6667
https://doi.org/10.1021/ac901536h pmid: 19624122
51 Welch B L. The generalisation of student’s problems when several different population variances are involved. Biometrika, 1947, 34(1–2): 28–35
https://doi.org/10.1093/biomet/34.1-2.28 pmid: 20287819
52 Breiman L. Random Forests. Machine Learning, 2001, 45(1): 5–32
https://doi.org/10.1023/A:1010933404324
53 Goldstein B A, Hubbard A E, Cutler A, Barcellos L F. An application of Random Forests to a genome-wide association dataset: methodological considerations & new findings. BMC Genetics, 2010, 11(1): 49
https://doi.org/10.1186/1471-2156-11-49 pmid: 20546594
54 Plumb R, Granger J, Stumpf C, Wilson I D, Evans J A, Lenz E M. Metabonomic analysis of mouse urine by liquid-chromatography-time of flight mass spectrometry (LC-TOFMS): detection of strain, diurnal and gender differences. Analyst, 2003, 128(7): 819–823
https://doi.org/10.1039/b304296k pmid: 12894816
55 Zhao B, Wall R J, Yang J. Transgenic expression of myostatin propeptide prevents diet-induced obesity and insulin resistance. Biochemical and Biophysical Research Communications, 2005, 337(1): 248–255
https://doi.org/10.1016/j.bbrc.2005.09.044 pmid: 16182246
56 Guo T, Jou W, Chanturiya T, Portas J, Gavrilova O, McPherron A C. Myostatin inhibition in muscle, but not adipose tissue, decreases fat mass and improves insulin sensitivity. PLoS ONE, 2009, 4(3): e4937
https://doi.org/10.1371/journal.pone.0004937 pmid: 19295913
57 McPherron A C. Metabolic Functions of Myostatin and Gdf11. Immunology, Endocrine & Metabolic Agents in Medicinal Chemistry, 2010, 10(4): 217–231
https://doi.org/10.2174/187152210793663810 pmid: 21197386
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed