Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

邮发代号 80-906

Frontiers of Agricultural Science and Engineering  2015, Vol. 2 Issue (1): 60-65   https://doi.org/10.15302/J-FASE-2015048
  本期目录
Novel polymorphic EST-based microsatellite marker isolation and characterization from Poncirus trifoliata (Rutaceae)
Manosh Kumar BISWAS1,Peng CHEN1,Mohamed Hamdy AMAR1,2,Xiuxin DENG1,*()
1. Key Laboratory of Horticultural Plant Biology (MOE), National Center of Citrus Breeding, Huazhong Agricultural University, Wuhan 430070, China
2. Desert Research Center, Egyptian Deserts Gene Bank, North Sinai, Egypt
 全文: PDF(1095 KB)   HTML
Abstract

Novel Poncirus trifoliata simple sequence repeat (SSR) markers were developed to evaluate their utility for genetic diversity and breeding studies of P. trifoliata and related species. A total of 108 primer pairs were characterized by PCR amplification experiments. Among these, 61 were polymorphic and transferable to other citrus species. The number of alleles per locus ranged from 2 to 6, with an average of 2.37 alleles per locus. The expected heterozygosity and observed heterozygosity ranged from 0 to 0.83 and 0 to 1.00, respectively. These novel polymorphic SSR markers will be useful for citrus cultivar identification and evaluation as well as breeding studies.

Key wordsmicrosatellite    polymorphism    Poncirus trifoliata
收稿日期: 2015-02-11      出版日期: 2015-05-22
Corresponding Author(s): Xiuxin DENG   
 引用本文:   
. [J]. Frontiers of Agricultural Science and Engineering, 2015, 2(1): 60-65.
Manosh Kumar BISWAS,Peng CHEN,Mohamed Hamdy AMAR,Xiuxin DENG. Novel polymorphic EST-based microsatellite marker isolation and characterization from Poncirus trifoliata (Rutaceae). Front. Agr. Sci. Eng. , 2015, 2(1): 60-65.
 链接本文:  
https://academic.hep.com.cn/fase/CN/10.15302/J-FASE-2015048
https://academic.hep.com.cn/fase/CN/Y2015/V2/I1/60
Fig.1  
Fig.2  
Locus ID P. trifoliata (8) Fortunella (8) C. grandis (8)
AN He Ho PIC AN He Ho PIC AN He Ho PIC
PteSR046 2 0.48 0.40 0.36 1 0.00 0.00 0.00 1 0.00 0.00 0.00
PteSR666 4 0.64 0.80 0.58 2 0.50 1.00 0.38 4 0.69 1.00 0.63
PteSR168 2 0.50 1.00 0.38 2 0.38 0.50 0.30 2 0.38 0.00 0.30
PteSR581 2 0.50 1.00 0.38 2 0.50 1.00 0.38 2 0.22 0.25 0.19
PteSR484 2 0.48 0.40 0.36 2 0.50 1.00 0.38 1 0.00 0.00 0.00
PteSR661 2 0.50 0.60 0.38 1 0.00 0.00 0.00 2 0.38 0.50 0.30
PteSR563 3 0.46 0.60 0.41 2 0.50 1.00 0.38 2 0.22 0.25 0.19
PteSR755 2 0.28 0.33 0.24 2 0.50 1.00 0.38 3 0.66 0.75 0.58
PteSR299 2 0.48 0.40 0.36 1 0.00 0.00 0.00 3 0.66 0.75 0.58
PteSR550 3 0.63 0.50 0.55 1 0.00 0.00 0.00 2 0.50 1.00 0.38
PteSR493 4 0.58 0.60 0.54 2 0.50 1.00 0.38 2 0.50 1.00 0.38
PteSR366 4 0.48 0.60 0.45 2 0.50 1.00 0.38 2 0.38 0.00 0.30
Mean 2.667 0.501 0.603 0.416 1.667 0.323 0.625 0.247 2.167 0.383 0.458 0.319
Locus ID C. sinensis (5) C. reticulata (8) Lemone-Lime (5)
AN He Ho PIC AN He Ho PIC AN He Ho PIC
PteSR046 2 0.18 0.20 0.16 3 0.56 0.00 0.50 1 0.00 0.00 0.00
PteSR666 2 0.50 1.00 0.38 4 0.74 1.00 0.69 6 0.83 1.00 0.81
PteSR168 3 0.58 0.20 0.49 4 0.58 0.60 0.54 3 0.67 0.67 0.59
PteSR581 2 0.42 0.60 0.33 2 0.50 0.20 0.38 2 0.50 1.00 0.38
PteSR484 3 0.56 0.40 0.50 1 0.00 0.00 0.00 1 0.00 0.00 0.00
PteSR661 2 0.42 0.60 0.33 2 0.42 0.60 0.33 2 0.50 1.00 0.38
PteSR563 2 0.50 0.20 0.38 2 0.18 0.20 0.16 3 0.61 1.00 0.54
PteSR755 1 0.00 0.00 0.00 4 0.58 0.80 0.54 4 0.75 1.00 0.70
PteSR299 3 0.56 0.00 0.50 2 0.32 0.00 0.27 1 0.00 0.00 0.00
PteSR550 4 0.70 0.80 0.65 4 0.72 1.00 0.67 3 0.61 0.33 0.54
PteSR493 2 0.50 1.00 0.38 3 0.66 0.80 0.59 3 0.61 1.00 0.54
PteSR366 3 0.34 0.20 0.31 2 0.18 0.20 0.16 2 0.50 1.00 0.38
Mean 2.417 0.438 0.433 0.368 2.750 0.453 0.450 0.403 2.583 0.465 0.667 0.405
Tab.1  
1 Swingle W T. The botany of Citrus and its wild relatives of the orange subfamily: I. Oakland: University of California Press<?Pub Caret?>, 1943
2 Biswas M K, Chai L, Amar M H, Zhang X, Deng X. Comparative analysis of genetic diversity in Citrus germplasm collection using AFLP, SSAP, SAMPL and SSR markers. Scientia Horticulturae, 2011, 129(4): 798–803
https://doi.org/10.1016/j.scienta.2011.06.015
3 Setsuko S, Uchiyama K, Sugai K, Yoshimaru H. Rapid development of microsatellite markers for Pandanus boninensis (Pandanaceae) by pyrosequencing technology. American Journal of Botany, 2012, 99(1): e33–e37
https://doi.org/10.3732/ajb.1100300 pmid: 22210836
4 Setsuko S, Uchiyama K, Sugai K, Yoshimaru H. Isolation and characterization of EST-SSR markers in Schima mertensiana (Theaceae) using pyrosequencing technology. American Journal of Botany, 2012, 99(1): e38–e42
https://doi.org/10.3732/ajb.1100301 pmid: 22210835
5 Biswas M K, Chai L J, Qi X, Deng X X. Generation, functional analysis and utility of C. grandis EST from a flower-derived cDNA library. Molecular Biology Reports, 2012, 39(7): 7221–7235
https://doi.org/10.1007/s11033-012-1553-8
6 Huang H, Lu J, Ren Z, Hunter W, Dowd S E, Dang P. Mining and validating grape (Vitis L.) ESTs to develop EST-SSR markers for genotyping and mapping. Molecular Breeding, 2011, 28(2): 241–254
https://doi.org/10.1007/s11032-010-9477-2 pmid: 21841909
7 Uchiyama K, Fujii S, Ishizuka W, Goto S, Tsumura Y. Development of 32 EST-SSR markers for Abies firma (Pinaceae) and their transferability to related species. Applications in Plant Sciences, 2013, 1(2): 1–5
8 Cheng Y J, Guo W W, Yi H L, Pang X M, Deng X X. An efficient protocol for genomic DNA extraction from Citrus species. Plant Molecular Biology Reporter, 2003, 21(2): 177–178
https://doi.org/10.1007/BF02774246
9 da Maia L C, Palmieri D A, de Souza V Q, Kopp M M, de Carvalho F I, Costa de Oliveira A. SSR Locator: tool for simple sequence repeat discovery integrated with primer sesign and PCR simulation. International Journal of Plant Genomics, 2008: 1–9
10 Ruiz C, Paz Breto M, Asíns M J. A quick methodology to identify sexual seedlings in citrus breeding programs using SSR markers. Euphytica, 2000, 112(1): 89–94
https://doi.org/10.1023/A:1003992719598
11 Yan Y, Huang Y, Fang X, Lu L, Zhou R, Ge X, Shi S. Development and characterization of EST-SSR markers in the invasive weed Mikania micrantha (Asteraceae). American Journal of Botany, 2011, 98(1): e1–e3
https://doi.org/10.3732/ajb.1000387 pmid: 21613074
12 Terzoli S, Beritognolo I, Sabatti M, Kuzminsky E. Development of a novel set of EST-SSR markers and cross-species amplification in Tamarix africana (Tamaricaceae). American Journal of Botany, 2010, 97(6): e45–e47
https://doi.org/10.3732/ajb.1000112 pmid: 21622457
13 Ouyang J, Yang G, Zhou R, Chen S, Guo M, Wu W, Huang Y, Shi S. Development and characterization of 18 EST-SSR markers in Sonneratia caseolaris. American Journal of Botany, 2011, 98(4): e78–e80
https://doi.org/10.3732/ajb.1000433 pmid: 21613152
14 Ma J Q, Zhou Y H, Ma C L, Yao M Z, Jin J Q, Wang X C, Chen L. Identification and characterization of 74 novel polymorphic EST-SSR markers in the tea plant, Camellia sinensis (Theaceae). American Journal of Botany, 2010, 97(12): e153–e156
https://doi.org/10.3732/ajb.1000376 pmid: 21616837
15 Jewell M C, Frere C H, Prentis P J, Lambrides C J, Godwin I D. Characterization and multiplexing of EST-SSR primers in Cynodon (Poaceae) species1. American Journal of Botany, 2010, 97(10): e99–e101
https://doi.org/10.3732/ajb.1000254 pmid: 21616792
16 Hou X G, Guo D L, Wang J. Development and characterization of EST-SSR markers in Paeonia suffruticosa (Paeoniaceae). American Journal of Botany, 2011, 98(11): e303–e305
https://doi.org/10.3732/ajb.1100172 pmid: 22003178
17 Wang Z, Li J, Luo Z, Huang L, Chen X, Fang B, Li Y, Chen J, Zhang X. Characterization and development of EST-derived SSR markers in cultivated sweetpotato (Ipomoea batatas). BMC Plant Biology, 2011, 11(1): 139
https://doi.org/10.1186/1471-2229-11-139 pmid: 22011271
18 Chen C, Zhou P, Choi Y A, Huang S, Gmitter Jr F G. Mining and characterizing microsatellites from citrus ESTs. TAG Theoretical and Applied Genetics, 2006, 112(7): 1248–1257
https://doi.org/10.1007/s00122-006-0226-1 pmid: 16474971
19 Tangphatsornruang S, Somta P, Uthaipaisanwong P, Chanprasert J, Sangsrakru D, Seehalak W, Sommanas W, Tragoonrung S, Srinives P. Characterization of microsatellites and gene contents from genome shotgun sequences of mungbean (Vigna radiata (L.) Wilczek). BMC Plant Biology, 2009, 9(1): 137
https://doi.org/10.1186/1471-2229-9-137 pmid: 19930676
20 Cavagnaro P F, Senalik D A, Yang L, Simon P W, Harkins T T, Kodira C D, Huang S, Weng Y. Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genomics, 2010, 11(1): 569
https://doi.org/10.1186/1471-2164-11-569 pmid: 20950470
21 Biswas M K, Xu Q, Mayer C, Deng X. Genome wide characterization of short tandem repeat markers in sweet orange (Citrus sinensis). PLoS ONE, 2014, 9(8): e104182
https://doi.org/10.1371/journal.pone.0104182 pmid: 25148383
22 Wang H, Walla J A, Zhong S, Huang D, Dai W. Development and cross-species/genera transferability of microsatellite markers discovered using 454 genome sequencing in chokecherry (Prunus virginiana L.). Plant Cell Reports, 2012,31(11): 2047–2055
https://doi.org/10.1007/s00299-012-1315-z pmid: 22837059
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed