Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

邮发代号 80-906

Frontiers of Agricultural Science and Engineering  2015, Vol. 2 Issue (1): 38-52   https://doi.org/10.15302/J-FASE-2015053
  本期目录
Current perspectives on shoot branching regulation
Cunquan YUAN1,Lin XI1,Yaping KOU1,Yu ZHAO2,Liangjun ZHAO1,*()
1. Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China
2. College of Science, China Agricultural University, Beijing 100193, China
 全文: PDF(634 KB)   HTML
Abstract

Shoot branching is regulated by the complex interactions among hormones, development, and environmental factors. Recent studies into the regulatory mecha-nisms of shoot branching have focused on strigolactones, which is a new area of investigation in shoot branching regulation. Elucidation of the function of the D53 gene has allowed exploration of detailed mechanisms of action of strigolactones in regulating shoot branching. In addition, the recent discovery that sucrose is key for axillary bud release has challenged the established auxin theory, in which auxin is the principal agent in the control of apical dominance. These developments increase our understan-ding of branching control and indicate that regulation of shoot branching involves a complex network. Here, we first summarize advances in the systematic regulatory network of plant shoot branching based on current information. Then we describe recent developments in the synthesis and signal transduction of strigolactones. Based on these considerations, we further summarize the plant shoot branching regulatory network, including long distance systemic signals and local gene activity mediated by strigolactones following perception of external envi-ronmental signals, such as shading, in order to provide a comprehensive overview of plant shoot branching.

Key wordssugar demand    apical dominance    decapitation    shade    shoot branching    strigolactones
收稿日期: 2015-04-03      出版日期: 2015-05-22
Corresponding Author(s): Liangjun ZHAO   
 引用本文:   
. [J]. Frontiers of Agricultural Science and Engineering, 2015, 2(1): 38-52.
Cunquan YUAN,Lin XI,Yaping KOU,Yu ZHAO,Liangjun ZHAO. Current perspectives on shoot branching regulation. Front. Agr. Sci. Eng. , 2015, 2(1): 38-52.
 链接本文:  
https://academic.hep.com.cn/fase/CN/10.15302/J-FASE-2015053
https://academic.hep.com.cn/fase/CN/Y2015/V2/I1/38
Fig.1  
Fig.2  
Fig.3  
1 Janssen B J, Drummond R S, Snowden K C. Regulation of axillary shoot development. Current Opinion in Plant Biology, 2014, 17: 28–35
https://doi.org/10.1016/j.pbi.2013.11.004 pmid: 24507491
2 Dun E A, Hanan J, Beveridge C A. Computational modeling and molecular physiology experiments reveal new insights into shoot branching in pea. Plant Cell Online, 2009, 21(11): 3459–3472
https://doi.org/10.1105/tpc.109.069013 pmid: 19948786
3 Leyser O. The control of shoot branching: an example of plant information processing. Plant, Cell & Environment, 2009, 32(6): 694–703
https://doi.org/10.1111/j.1365-3040.2009.01930.x pmid: 19143993
4 Beveridge C A. Axillary bud outgrowth: sending a message. Current Opinion in Plant Biology, 2006, 9(1): 35–40
https://doi.org/10.1016/j.pbi.2005.11.006 pmid: 16325456
5 Shimizu-Sato S, Mori H. Control of outgrowth and dormancy in axillary buds. Plant Physiology, 2001, 127(4): 1405–1413
https://doi.org/10.1104/pp.010841 pmid: 11743082
6 Domagalska M A, Leyser O. Signal integration in the control of shoot branching. Nature Reviews Molecular Cell Biology, 2011, 12(4): 211–221
https://doi.org/10.1038/nrm3088 pmid: 21427763
7 Wolters H, Jürgens G. Survival of the flexible: hormonal growth control and adaptation in plant development. Nature Reviews Genetics, 2009, 10(5): 305–317
https://doi.org/10.1038/nrg2558 pmid: 19360022
8 Ljung K, Bhalerao R P, Sandberg G. Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant Journal, 2001, 28(4): 465–474
https://doi.org/10.1046/j.1365-313X.2001.01173.x pmid: 11737783
9 G?lweiler L, Guan C, Müller A, Wisman E, Mendgen K, Yephremov A, Palme K. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science, 1998, 282(5397): 2226–2230
https://doi.org/10.1126/science.282.5397.2226 pmid: 9856939
10 Wi?niewska J, Xu J, Seifertová D, Brewer P B, Ruzicka K, Blilou I, Rouquié D, Benková E, Scheres B, Friml J. Polar PIN localization directs auxin flow in plants. Science, 2006, 312(5775): 883–883
https://doi.org/10.1126/science.1121356 pmid: 16601151
11 Kohlen W, Ruyter-Spira C, Bouwmeester H J. Strigolactones: a new musician in the orchestra of plant hormones. Botany, 2011,89(12): 827–840
https://doi.org/10.1139/b11-063
12 Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S. Inhibition of shoot branching by new terpenoid plant hormones. Nature, 2008, 455(7210): 195–200
https://doi.org/10.1038/nature07272 pmid: 18690207
13 Kebrom T H, Spielmeyer W, Finnegan E J. Grasses provide new insights into regulation of shoot branching. Trends in Plant Science, 2013, 18(1): 41–48
https://doi.org/10.1016/j.tplants.2012.07.001 pmid: 22858267
14 Li C J, Bangerth F. Autoinhibition of indoleacetic acid transport in the shoots of two-branched pea (Pisum sativum) plants and its relationship to correlative dominance. Physiologia Plantarum, 1999, 106(4): 415–420
https://doi.org/10.1034/j.1399-3054.1999.106409.x
15 Balla J, Kalousek P, Rein?hl V, Friml J, Procházka S. Competitive canalization of PIN-dependent auxin flow from axillary buds controls pea bud outgrowth. Plant Journal, 2011, 65(4): 571–577
https://doi.org/10.1111/j.1365-313X.2010.04443.x pmid: 21219506
16 Ishikawa S, Maekawa M, Arite T, Onishi K, Takamure I, Kyozuka J. Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant & Cell Physiology, 2005, 46(1): 79–86
https://doi.org/10.1093/pcp/pci022 pmid: 15659436
17 Bennett T, Sieberer T, Willett B, Booker J, Luschnig C, Leyser O. The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Current Biology, 2006, 16(6): 553–563
https://doi.org/10.1016/j.cub.2006.01.058 pmid: 16546078
18 Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M, Sakakibara H, Kyozuka J. DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant Journal, 2007, 51(6): 1019–1029
https://doi.org/10.1111/j.1365-313X.2007.03210.x pmid: 17655651
19 Lin H, Wang R, Qian Q, Yan M, Meng X, Fu Z, Yan C, Jiang B, Su Z, Li J, Wang Y. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell Online, 2009, 21(5): 1512–1525
https://doi.org/10.1105/tpc.109.065987 pmid: 19470589
20 Sachs T. The control of the patterned differentiation of vascular tissues. Advances in Botanical Research, 1981, 9: 151–262
https://doi.org/10.1016/S0065-2296(08)60351-1
21 Prusinkiewicz P, Crawford S, Smith R S, Ljung K, Bennett T, Ongaro V, Leyser O. Control of bud activation by an auxin transport switch. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(41): 17431–17436
https://doi.org/10.1073/pnas.0906696106 pmid: 19805140
22 Lazar G, Goodman H M. MAX1, a regulator of the flavonoid pathway, controls vegetative axillary bud outgrowth in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(2): 472–476
https://doi.org/10.1073/pnas.0509463102 pmid: 16387852
23 Crawford S, Shinohara N, Sieberer T, Williamson L, George G, Hepworth J, Müller D, Domagalska M A, Leyser O. Strigolactones enhance competition between shoot branches by dampening auxin transport. Development, 2010, 137(17): 2905–2913
https://doi.org/10.1242/dev.051987 pmid: 20667910
24 Liang J, Zhao L, Challis R, Leyser O. Strigolactone regulation of shoot branching in chrysanthemum (Dendranthema grandiflorum). Journal of Experimental Botany, 2010, 61(11): 3069–3078
https://doi.org/10.1093/jxb/erq133 pmid: 20478970
25 Shinohara N, Taylor C, Leyser O. Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane. PLoS Biology, 2013, 11(1): e1001474
https://doi.org/10.1371/journal.pbio.1001474 pmid: 23382651
26 Davies C R, Seth A K, Wareing P F. Auxin and kinetin interaction in apical dominance. Science, 1966, 151(3709): 468–469
https://doi.org/10.1126/science.151.3709.468 pmid: 17798523
27 Chatfield S P, Stirnberg P, Forde B G, Leyser O. The hormonal regulation of axillary bud growth in Arabidopsis. Plant Journal, 2000, 24(2): 159–169
https://doi.org/10.1046/j.1365-313x.2000.00862.x pmid: 11069691
28 Li C, Bangerth F. Stimulatory effect of cytokinins and interaction with IAA on the release of lateral buds of pea plants from apical dominance. Journal of Plant Physiology, 2003, 160(9): 1059–1063
https://doi.org/10.1078/0176-1617-01042 pmid: 14593807
29 Jones B, Gunner?s S A, Petersson S V, Tarkowski P, Graham N, May S, Dolezal K, Sandberg G, Ljung K. Cytokinin regulation of auxin synthesis in Arabidopsis involves a homeostatic feedback loop regulated via auxin and cytokinin signal transduction. Plant Cell Online, 2010, 22(9): 2956–2969
https://doi.org/10.1105/tpc.110.074856 pmid: 20823193
30 Kalousek P, Buchtova D, Balla J, Reinohl V, Prochazka S. Cytokinins and polar transport of auxin in axillary pea buds. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 2014, 58(4): 79–88
https://doi.org/10.11118/actaun201058040079
31 Brewer P B, Dun E A, Ferguson B J, Rameau C, Beveridge C A. Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis. Plant Physiology, 2009, 150(1): 482–493
https://doi.org/10.1104/pp.108.134783 pmid: 19321710
32 Renton M, Hanan J, Ferguson B J, Beveridge C A. Models of long-distance transport: how is carrier-dependent auxin transport regulated in the stem? New Phytologist, 2012, 194(3): 704–715
https://doi.org/10.1111/j.1469-8137.2012.04093.x pmid: 22443265
33 Morris S E, Cox M C, Ross J J, Krisantini S, Beveridge C A. Auxin dynamics after decapitation are not correlated with the initial growth of axillary buds. Plant Physiology, 2005, 138(3): 1665–1672
https://doi.org/10.1104/pp.104.058743 pmid: 15965021
34 Ferguson B J, Beveridge C A. Roles for auxin, cytokinin, and strigolactone in regulating shoot branching. Plant Physiology, 2009, 149(4): 1929–1944
https://doi.org/10.1104/pp.109.135475 pmid: 19218361
35 Durbak A, Yao H, McSteen P. Hormone signaling in plant development. Current Opinion in Plant Biology, 2012, 15(1): 92–96
https://doi.org/10.1016/j.pbi.2011.12.004 pmid: 22244082
36 Hayward A, Stirnberg P, Beveridge C, Leyser O. Interactions between auxin and strigolactone in shoot branching control. Plant Physiology, 2009, 151(1): 400–412
https://doi.org/10.1104/pp.109.137646 pmid: 19641034
37 Sorefan K, Booker J, Haurogné K, Goussot M, Bainbridge K, Foo E, Chatfield S, Ward S, Beveridge C, Rameau C, Leyser O. MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes & Development, 2003, 17(12): 1469–1474
https://doi.org/10.1101/gad.256603 pmid: 12815068
38 Foo E, Bullier E, Goussot M, Foucher F, Rameau C, Beveridge C A. The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea. Plant Cell Online, 2005, 17(2): 464–474
https://doi.org/10.1105/tpc.104.026716 pmid: 15659639
39 Zou J, Zhang S, Zhang W, Li G, Chen Z, Zhai W, Zhao X, Pan X, Xie Q, Zhu L. The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant Journal, 2006, 48(5): 687–698
https://doi.org/10.1111/j.1365-313X.2006.02916.x pmid: 17092317
40 Dun E A, de Saint Germain A, Rameau C, Beveridge C A. Dynamics of strigolactone function and shoot branching responses in Pisum sativum. Molecular Plant, 2013, 6(1): 128–140
https://doi.org/10.1093/mp/sss131 pmid: 23220942
41 Faiss M, Zalubìlová J, Strnad M, Schmülling T. Conditional transgenic expression of the ipt gene indicates a function for cytokinins in paracrine signaling in whole tobacco plants. Plant Journal, 1997, 12(2): 401–415
https://doi.org/10.1046/j.1365-313X.1997.12020401.x pmid: 9301091
42 Nordstr?m A, Tarkowski P, Tarkowska D, Norbaek R, Astot C, Dolezal K, Sandberg G. Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin-cytokinin-regulated development. Proceedings of the National Academy of Sciences ofthe United States of America, 2004, 101(21): 8039–8044
https://doi.org/10.1073/pnas.0402504101 pmid: 15146070
43 Tanaka M, Takei K, Kojima M, Sakakibara H, Mori H. Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. Plant Journal, 2006, 45(6): 1028–1036
https://doi.org/10.1111/j.1365-313X.2006.02656.x pmid: 16507092
44 Morris D A. Hormonal regulation of source-sink relationships: an overview of potential control mechanisms. In: Zamski E, Schaffer A A, eds. Photoassimilate distribution in plants and crops. Source-sink relationships. New York: Marcel Dekker, 1996, 441–466
45 Mason M G, Ross J J, Babst B A, Wienclaw B N, Beveridge C A. Sugar demand, not auxin, is the initial regulator of apical dominance. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(16): 6092–6097
https://doi.org/10.1073/pnas.1322045111 pmid: 24711430
46 Jiang L, Liu X, Xiong G, Liu H, Chen F, Wang L, Meng X, Liu G, Yu H, Yuan Y, Yi W, Zhao L, Ma H, He Y, Wu Z, Melcher K, Qian Q, Xu H E, Wang Y, Li J. DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature, 2013, 504(7480): 401–405
pmid: 24336200
47 Zhou F, Lin Q, Zhu L, Ren Y, Zhou K, Shabek N, Wu F, Mao H, Dong W, Gan L, Ma W, Gao H, Chen J, Yang C, Wang D, Tan J, Zhang X, Guo X, Wang J, Jiang L, Liu X, Chen W, Chu J, Yan C, Ueno K, Ito S, Asami T, Cheng Z, Wang J, Lei C, Zhai H, Wu C, Wang H, Zheng N, Wan J. D14-SCF(D3)-dependent degradation of D53 regulates strigolactone signalling. Nature, 2013, 504(7480): 406–410
https://doi.org/10.1038/nature12878 pmid: 24336215
48 Janssen B J, Snowden K C. Strigolactone and karrikin signal perception: receptors, enzymes, or both? Frontiers in Plant Science, 2012, 3: 1–13
49 Brewer P B, Koltai H, Beveridge C A. Diverse roles of strigolactones in plant development. Molecular Plant, 2013, 6(1): 18–28
https://doi.org/10.1093/mp/sss130 pmid: 23155045
50 de Saint Germain A, Bonhomme S, Boyer F D, Rameau C. Novel insights into strigolactone distribution and signalling. Current Opinion in Plant Biology, 2013, 16(5): 583–589
https://doi.org/10.1016/j.pbi.2013.06.007 pmid: 23830996
51 Foo E, Reid J B. Strigolactones: new physiological roles for an ancient signal. Journal of Plant Growth Regulation, 2013, 32(2): 429–442
https://doi.org/10.1007/s00344-012-9304-6
52 Ruyter-Spira C, Al-Babili S, van der Krol S, Bouwmeester H. The biology of strigolactones. Trends in Plant Science, 2013, 18(2): 72–83
https://doi.org/10.1016/j.tplants.2012.10.003 pmid: 23182342
53 Waldie T, McCulloch H, Leyser O. Strigolactones and the control of plant development: lessons from shoot branching. Plant Journal, 2014, 79(4): 607–622
https://doi.org/10.1111/tpj.12488 pmid: 24612082
54 Smith S M, Li J. Signalling and responses to strigolactones and karrikins. Current Opinion in Plant Biology, 2014, 21: 23–29
https://doi.org/10.1016/j.pbi.2014.06.003 pmid: 24996032
55 Seto Y, Yamaguchi S. Strigolactone biosynthesis and perception. Current Opinion in Plant Biology, 2014, 21: 1–6
https://doi.org/10.1016/j.pbi.2014.06.001 pmid: 24981923
56 Cheng X, Ruyter-Spira C, Bouwmeester H. The interaction between strigolactones and other plant hormones in the regulation of plant development. Frontiers in Plant Science, 2013, 4: 199
https://doi.org/10.3389/fpls.2013.00199 pmid: 23785379
57 Rameau C, Bertheloot J, Leduc N, Andrieu B, Foucher F, Sakr S. Multiple pathways regulate shoot branching. Frontiers in Plant Science, 2014, 5: 741
pmid: 25628627
58 Bainbridge K, Sorefan K, Ward S, Leyser O. Hormonally controlled expression of the Arabidopsis MAX4 shoot branching regulatory gene. Plant Journal, 2005, 44(4): 569–580
https://doi.org/10.1111/j.1365-313X.2005.02548.x pmid: 16262707
59 Waters M T, Nelson D C, Scaffidi A, Flematti G R, Sun Y K, Dixon K W, Smith S M. Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. Development, 2012, 139(7): 1285–1295
https://doi.org/10.1242/dev.074567 pmid: 22357928
60 Waters M T, Scaffidi A, Flematti G R, Smith S M. Karrikins force a rethink of strigolactone mode of action. Plant Signaling & Behavior, 2012, 7(8): 969–972
https://doi.org/10.4161/psb.20977 pmid: 22827937
61 Booker J, Auldridge M, Wills S, McCarty D, Klee H, Leyser O. MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Current Biology, 2004, 14(14): 1232–1238
https://doi.org/10.1016/j.cub.2004.06.061 pmid: 15268852
62 Schwartz S H, Qin X, Loewen M C. The biochemical characterization of two carotenoid cleavage enzymes from Arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching. Journal of Biological Chemistry, 2004, 279(45): 46940–46945
https://doi.org/10.1074/jbc.M409004200 pmid: 15342640
63 Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S. The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science, 2012, 335(6074): 1348–1351
https://doi.org/10.1126/science.1218094 pmid: 22422982
64 Zhang S, Li G, Fang J, Chen W, Jiang H, Zou J, Liu X, Zhao X, Li X, Chu C, Xie Q, Jiang X, Zhu L. The interactions among DWARF10, auxin and cytokinin underlie lateral bud outgrowth in rice. Journal of Integrative Plant Biology, 2010, 52(7): 626–638
pmid: 20590993
65 Morris S E, Turnbull C G, Murfet I C, Beveridge C A. Mutational analysis of branching in pea. Evidence that Rms1 and Rms5 regulate the same novel signal. Plant Physiology, 2001, 126(3): 1205–1213
https://doi.org/10.1104/pp.126.3.1205 pmid: 11457970
66 Drummond R S, Martínez-Sánchez N M, Janssen B J, Templeton K R, Simons J L, Quinn B D, Karunairetnam S, Snowden K C. Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE7 is involved in the production of negative and positive branching signals in petunia. Plant Physiology, 2009, 151(4): 1867–1877
https://doi.org/10.1104/pp.109.146720 pmid: 19846541
67 Snowden K C, Simkin A J, Janssen B J, Templeton K R, Loucas H M, Simons J L, Karunairetnam S, Gleave A P, Clark D G, Klee H J. The Decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development. Plant Cell Online, 2005, 17(3): 746–759
https://doi.org/10.1105/tpc.104.027714 pmid: 15705953
68 Zhang Y, van Dijk A D, Scaffidi A, Flematti G R, Hofmann M, Charnikhova T, Verstappen F, Hepworth J, van der Krol S, Leyser O, Smith S M, Zwanenburg B, Al-Babili S, Ruyter-Spira C, Bouwmeester H J. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nature Chemical Biology, 2014, 10(12): 1028–1033
https://doi.org/10.1038/nchembio.1660 pmid: 25344813
69 Booker J, Sieberer T, Wright W, Williamson L, Willett B, Stirnberg P, Turnbull C, Srinivasan M, Goddard P, Leyser O. MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Developmental Cell, 2005, 8(3): 443–449
https://doi.org/10.1016/j.devcel.2005.01.009 pmid: 15737939
70 Koltai H. LekKala S P, Bhattacharya C, Mayzlish-Gati E, Resnick N, Wininger S, Dor E, Yoneyama K, Hershenhorn J, Joel D M, Kapulnik Y. A tomato strigolactone-impaired mutant displays aberrant shoot morphology and plant interactions. Journal of Experimental Botany, 2010, 61(6): 1739–1749
71 Roose J L, Frankel L K, Bricker T M. Developmental defects in mutants of the PsbP domain protein 5 in Arabidopsis thaliana. PLoS ONE, 2011, 6(12): e28624
https://doi.org/10.1371/journal.pone.0028624 pmid: 22174848
72 Liu W, Kohlen W, Lillo A, Op den Camp R, Ivanov S, Hartog M, Limpens E, Jamil M, Smaczniak C, Kaufmann K, Yang W C, Hooiveld G J E J, Charnikhova T, Bouwmeester H J, Bisseling T, Geurts R. Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell Online, 2011, 23(10): 3853–3865
https://doi.org/10.1105/tpc.111.089771 pmid: 22039214
73 Sasse J, Simon S, Gübeli C, Liu G W, Cheng X, Friml J, Bouwmeester H, Martinoia E, Borghi L. Asymmetric localizations of the ABC transporter PaPDR1 trace paths of directional strigolactone transport. Current Biology, 2015, 25(5): 647–655
https://doi.org/10.1016/j.cub.2015.01.015 pmid: 25683808
74 Shen H, Luong P, Huq E. The F-box protein MAX2 functions as a positive regulator of photomorphogenesis in Arabidopsis. Plant Physiology, 2007, 145(4): 1471–1483
https://doi.org/10.1104/pp.107.107227 pmid: 17951458
75 Stirnberg P, Furner I J, Ottoline Leyser H M. MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. Plant Journal, 2007,50(1): 80–94
https://doi.org/10.1111/j.1365-313X.2007.03032.x pmid: 17346265
76 Chevalier F, Nieminen K, Sánchez-Ferrero J C, Rodríguez M L, Chagoyen M, Hardtke C S, Cubas P. Strigolactone promotes degradation of DWARF14, an α/β hydrolase essential for strigolactone signaling in Arabidopsis. Plant Cell Online, 2014, 26(3): 1134–1150
https://doi.org/10.1105/tpc.114.122903 pmid: 24610723
77 Foo E, Turnbull C G, Beveridge C A. Long-distance signaling and the control of branching in the rms1 mutant of pea. Plant Physiology, 2001, 126(1): 203–209
https://doi.org/10.1104/pp.126.1.203 pmid: 11351083
78 Mashiguchi K, Sasaki E, Shimada Y, Nagae M, Ueno K, Nakano T, Yoneyama K, Suzuki Y, Asami T. Feedback-regulation of strigolactone biosynthetic genes and strigolactone-regulated genes in Arabidopsis. Bioscience, Biotechnology, and Biochemistry, 2009,73(11): 2460–2465
https://doi.org/10.1271/bbb.90443 pmid: 19897913
79 Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M, Bachelier J B, Reinhardt D, Bours R, Bouwmeester H J, Martinoia E. A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature, 2012, 483(7389): 341–344
https://doi.org/10.1038/nature10873 pmid: 22398443
80 Xie X, Wang G, Yang L, Cheng T, Gao J, Wu Y, Xia Q. Cloning and characterization of a novel Nicotiana tabacum ABC transporter involved in shoot branching. Physiologia Plantarum, 2015, 153(2): 299–306
https://doi.org/10.1111/ppl.12267 pmid: 25171230
81 Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J. d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant & Cell Physiology, 2009, 50(8): 1416–1424
https://doi.org/10.1093/pcp/pcp091 pmid: 19542179
82 Gao Z, Qian Q, Liu X, Yan M, Feng Q, Dong G, Liu J, Han B. Dwarf 88, a novel putative esterase gene affecting architecture of rice plant. Plant Molecular Biology, 2009, 71(3): 265–276
https://doi.org/10.1007/s11103-009-9522-x pmid: 19603144
83 Zhao L H, Zhou X E, Wu Z S, Yi W, Xu Y, Li S, Xu T H, Liu Y, Chen R Z, Kovach A, Kang Y, Hou L, He Y, Xie C, Song W, Zhong D, Xu Y, Wang Y, Li J, Zhang C, Melcher K, Xu H E. Crystal structures of two phytohormone signal-transducing α/β hydrolases: karrikin-signaling KAI2 and strigolactone-signaling DWARF14. Cell Research, 2013, 23(3): 436–439
https://doi.org/10.1038/cr.2013.19 pmid: 23381136
84 Kagiyama M, Hirano Y, Mori T, Kim S Y, Kyozuka J, Seto Y, Yamaguchi S, Hakoshima T. Structures of D14 and D14L in the strigolactone and karrikin signaling pathways. Genes to Cells, 2013, 18(2): 147–160
https://doi.org/10.1111/gtc.12025 pmid: 23301669
85 Aguilar-Martínez J A, Poza-Carrión C, Cubas P. ArabidopsisBRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell Online, 2007, 19(2): 458–472
https://doi.org/10.1105/tpc.106.048934 pmid: 17307924
86 Minakuchi K, Kameoka H, Yasuno N, Umehara M, Luo L, Kobayashi K, Hanada A, Ueno K, Asami T, Yamaguchi S, Kyozuka J. FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice. Plant & Cell Physiology, 2010, 51(7): 1127–1135
https://doi.org/10.1093/pcp/pcq083 pmid: 20547591
87 Braun N, de Saint Germain A, Pillot J P, Boutet-Mercey S, Dalmais M, Antoniadi I, Li X, Maia-Grondard A, Le Signor C, Bouteiller N, Luo D, Bendahmane A, Turnbull C, Rameau C. The pea TCP transcription factor PsBRC1 acts downstream of strigolactones to control shoot branching. Plant Physiology, 2012, 158(1): 225–238
https://doi.org/10.1104/pp.111.182725 pmid: 22045922
88 Doebley J, Wang R L. Genetics and the evolution of plant form: an example from maize. Cold Spring Harbor symposia on quantitative biology, 1997, 62: 361–367.
89 Takeda T, Suwa Y, Suzuki M, Kitano H, Ueguchi-Tanaka M, Ashikari M, Matsuoka M, Ueguchi C. The OsTB1 gene negatively regulates lateral branching in rice. Plant Journal, 2003, 33(3): 513–520
https://doi.org/10.1046/j.1365-313X.2003.01648.x pmid: 12581309
90 Guan J C, Koch K E, Suzuki M, Wu S, Latshaw S, Petruff T, Goulet C, Klee H J, McCarty D R. Diverse roles of strigolactone signaling in maize architecture and the uncoupling of a branching-specific subnetwork. Plant Physiology, 2012, 160(3): 1303–1317
https://doi.org/10.1104/pp.112.204503 pmid: 22961131
91 Guo S, Xu Y, Liu H, Mao Z, Zhang C, Ma Y, Zhang Q, Meng Z, Chong K. The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Nature Communications, 2013, 4: 1566
https://doi.org/10.1038/ncomms2542 pmid: 23463009
92 Wang Y, Sun S, Zhu W, Jia K, Yang H, Wang X. Strigolactone/MAX2-induced degradation of brassinosteroid transcriptional effector BES1 regulates shoot branching. Developmental Cell, 2013, 27(6): 681–688
https://doi.org/10.1016/j.devcel.2013.11.010 pmid: 24369836
93 Kebrom T H, Burson B L, Finlayson S A. Phytochrome B represses Teosinte Branched1 expression and induces sorghum axillary bud outgrowth in response to light signals. Plant Physiology, 2006, 140(3): 1109–1117
https://doi.org/10.1104/pp.105.074856 pmid: 16443694
94 Kebrom T H, Chandler P M, Swain S M, King R W, Richards R A, Spielmeyer W. Inhibition of tiller bud outgrowth in the tin mutant of wheat is associated with precocious internode development. Plant Physiology, 2012, 160(1): 308–318
https://doi.org/10.1104/pp.112.197954 pmid: 22791303
95 Martín-Trillo M, Grandío E G, Serra F, Marcel F, Rodríguez-Buey M L, Schmitz G, Theres K, Bendahmane A, Dopazo H, Cubas P. Role of tomato BRANCHED1-like genes in the control of shoot branching. Plant Journal, 2011, 67(4): 701–714
https://doi.org/10.1111/j.1365-313X.2011.04629.x pmid: 21554455
96 Chen X L, Zhou X Y, Xi L, Li J X, Zhao R Y, Ma N, Zhao L J. Roles of DgBRC1 in regulation of lateral branching in chrysanthemum (Dendranthema× grandiflora cv. Jinba). PLoS ONE, 2013, 8(4): 1–11
97 Dun E A, de Saint Germain A, Rameau C, Beveridge C A. Antagonistic action of strigolactone and cytokinin in bud outgrowth control. Plant Physiology, 2012, 158(1): 487–498
https://doi.org/10.1104/pp.111.186783 pmid: 22042819
98 Casal J J, Sanchez R A, Deregibus V A. The effect of plant density on tillering: the involvement of R/FR ratio and the proportion of radiation intercepted per plant. Environmental and Experimental Botany, 1986, 26(4): 365–371
https://doi.org/10.1016/0098-8472(86)90024-9
99 Casal J J. Shade avoidance. The Arabidopsis book, 2012, 10: e0157
100 Kebrom T H, Brutnell T P, Finlayson S A. Suppression of sorghum axillary bud outgrowth by shade, phyB and defoliation signalling pathways. Plant, Cell & Environment, 2010, 33(1): 48–58
pmid: 19843258
101 González-Grandío E, Poza-Carrión C, Sorzano C O S, Cubas P. BRANCHED1 promotes axillary bud dormancy in response to shade in Arabidopsis. Plant Cell Online, 2013, 25(3): 834–850
https://doi.org/10.1105/tpc.112.108480 pmid: 23524661
102 Finlayson S A, Krishnareddy S R, Kebrom T H, Casal J J. Phytochrome regulation of branching in Arabidopsis. Plant Physiology, 2010, 152(4): 1914–1927
https://doi.org/10.1104/pp.109.148833 pmid: 20154098
103 Tao Y, Ferrer J L, Ljung K, Pojer F, Hong F, Long J A, Li L, Moreno J E, Bowman M E, Ivans L J, Cheng Y, Lim J, Zhao Y, Ballaré C L, Sandberg G, Noel J P, Chory J. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell, 2008, 133(1): 164–176
https://doi.org/10.1016/j.cell.2008.01.049 pmid: 18394996
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed