Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

邮发代号 80-906

Frontiers of Agricultural Science and Engineering  2015, Vol. 2 Issue (4): 311-317   https://doi.org/10.15302/J-FASE-2015075
  本期目录
The microRNA, miR-29c, participates in muscle development through targeting the YY1 gene and is associated with postmortem muscle pH in pigs
Weiya ZHANG1,Wei WEI1,2,Yuanyuan ZHAO1,Shuhong ZHAO1,Xinyun LI1,*()
1. Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
2. College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
 全文: PDF(480 KB)   HTML
Abstract

Previous studies indicated that miR-29c is important for muscle development in mice and human, but its role in pigs is unknown. In this study, we detected the expression of miR-29c in Meishan longissimus lumborum (LL) muscle. The results showed that miR-29c was gradually upregulated during development of skeletal muscle in pig. Moreover, the expression of YY1 and Akt3 genes, which were confirmed to be targeted by miR-29c in mice, was decreased along with muscle development. Furthermore, the expression level of miR-29c was significantly higher in adult Meishan pigs than Large White pigs, while the expression of YY1 and Akt3 genes was significantly lower in Meishan pigs. These results indicated that the expression pattern of miR-29c was opposite to that of YY1 and Akt3 genes in pigs. Also, the luciferase assay indicated that miR-29s can target the YY1 gene in pigs. In addition, we identified a T to C mutation in the primary transcript of miR-29c, which was associated with the postmortem muscle pH in pigs. Based on these results, we concluded that miR-29c is also important in skeletal muscle development of pigs.

Key wordspig    miR-29c    skeletal muscle    expression    SNP
收稿日期: 2015-07-01      出版日期: 2016-01-19
Corresponding Author(s): Xinyun LI   
 引用本文:   
. [J]. Frontiers of Agricultural Science and Engineering, 2015, 2(4): 311-317.
Weiya ZHANG,Wei WEI,Yuanyuan ZHAO,Shuhong ZHAO,Xinyun LI. The microRNA, miR-29c, participates in muscle development through targeting the YY1 gene and is associated with postmortem muscle pH in pigs. Front. Agr. Sci. Eng. , 2015, 2(4): 311-317.
 链接本文:  
https://academic.hep.com.cn/fase/CN/10.15302/J-FASE-2015075
https://academic.hep.com.cn/fase/CN/Y2015/V2/I4/311
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Genotype No. Muscle pHu value Muscle drip loss/% Intramuscular fat content/% Loin eye area /cm2
CC 46 5.67±0.03a 1.60±0.21 2.27±0.08 46.17±0.91
TC 121 5.57±0.02b 1.69±0.13 2.23±0.05 45.73±0.56
TT 65 5.53±0.03b 1.97±0.17 2.20±0.07 45.71±0.76
P Value
CC-TC 0.0098** 0.7329 0.6749 0.6827
CC-TT 0.0011** 0.1743 0.4975 0.7009
TC-TT 0.2332 0.1873 0.7055 0.9845
Tab.1  
1 Brozinick  J T Jr, Roberts  B R, Dohm  G L. Defective signaling through Akt-2 and-3 but not Akt-1 in insulin-resistant human skeletal muscle: potential role in insulin resistance. Diabetes, 2003, 52(4): 935–941
https://doi.org/10.2337/diabetes.52.4.935
2 Wang  L, Zhou  L, Jiang  P, Lu  L, Chen  X, Lan  H, Guttridge  D C, Sun  H, Wang  H. Loss of miR-29 in myoblasts contributes to dystrophic muscle pathogenesis. Molecular Therapy, 2012, 20(6): 1222–1233
https://doi.org/10.1038/mt.2012.35
3 Bartel  D P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2): 281–297
https://doi.org/10.1016/S0092-8674(04)00045-5
4 Tiao  M M, Wang  F S, Huang  L T, Chuang  J H, Kuo  H C, Yang  Y L, Huang  Y H. MicroRNA-29a protects against acute liver injury in a mouse model of obstructive jaundice via inhibition of the extrinsic apoptosis pathway. Apoptosis, 2012, 19(1): 30–41 
https://doi.org/10.1007/s10495-013-0909-4
5 Kwiecinski  M, Elfimova  N, Noetel  A, Töx  U, Steffen  H M, Hacker  U, Nischt  R, Dienes  H P, Odenthal  M. Expression of platelet-derived growth factor-C and insulin-like growth factor I in hepatic stellate cells is inhibited by miR-29. Laboratory Investigation, 2012, 92(7): 978–987
https://doi.org/10.1038/labinvest.2012.70
6 Wei  W, He  H B, Zhang  W Y, Zhang  H X, Bai  J B, Liu  H Z, Cao  J H, Chang  K C, Li  X Y, Zhao  S H. MiR-29 targets Akt3 to reduce proliferation and facilitate differentiation of myoblasts in skeletal muscle development. Cell Death & Disease, 2013, 4(6): e668
https://doi.org/10.1038/cddis.2013.184
7 Kriegel  A J, Liu  Y, Fang  Y, Ding  X, Liang  M. The miR-29 family: genomics, cell biology, and relevance to renal and cardiovascular injury. Physiological Genomics, 2012, 44(4): 237–244
https://doi.org/10.1152/physiolgenomics.00141.2011
8 Ouyang  Y B, Xu  L, Lu  Y, Sun  X, Yue  S, Xiong  X X, Giffard  R G. Astrocyte-enriched miR-29a targets PUMA and reduces neuronal vulnerability to forebrain ischemia. Wiley Periodicals, 2013, 61: 1784–1794
9 Nijhuis  A, Biancheri  P, Lewi  A, Bishop  C L, Giuffrida  P, Chan  C, Feakins  R, Poulsom  R, Di Sabatino  A, Corazza  G R, MacDonald  T T, Lindsay  J O, Silver  A R. In Crohn’s disease fibrosis reduced expression of the miR-29 family enhances collagen expression in intestinal fibroblasts. Clinical Science, 2014, 127(5): 341–350
https://doi.org/10.1042/CS20140048
10 Bandyopadhyay  S, Friedman  R C, Marquez  R T, Keck  K, Kong  B, Icardi  M S, Brown  K E, Burge  C B, Schmidt  W N, Wang  Y, McCaffrey  A P. Hepatitis C virus infection and hepatic stellate cell activation downregulate miR-29: miR-29 overexpression reduces hepatitis C viral abundance in culture. Journal of Infectious Diseases, 2011, 203(12): 1753–1762
https://doi.org/10.1093/infdis/jir186
11 Morita  S, Horii  T, Kimura  M, Ochiya  T, Tajima  S, Hatada  I. MiR-29 represses the activities of DNA methyltransferases and DNA demethylases. International Journal of Molecular Sciences, 2013, 14(7): 14647–14658
https://doi.org/10.3390/ijms140714647
12 Franceschetti  T, Kessler  C B, Lee  S K, Delany  A M. miR-29 promotes murine osteoclastogenesis by regulating osteoclast commitment and migration. Journal of Biological Chemistry, 2013, 288(46): 33347–33360
https://doi.org/10.1074/jbc.M113.484568
13 Wang  Y, Zhang  X, Li  H, Yu  J, Ren  X. The role of miRNA-29 family in cancer. European Journal of Cell Biology, 2013, 92(3): 123–128
https://doi.org/10.1016/j.ejcb.2012.11.004
14 Wang  H, Garzon  R, Sun  H, Ladner  K J, Singh  R, Dahlman  J, Cheng  A, Hall  B M, Qualman  S J, Chandler  D S, Croce  C M, Guttridge  D C. NF-κB–YY1–miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell, 2008, 14(5): 369–381
https://doi.org/10.1016/j.ccr.2008.10.006
15 CaLLara   F R, Moi   M, dos Santos Luan   S. Carcass characteristics and qualitative attributes of pork from immunocastrated animals. Asian-Australas Journal of Animal Science, 2013,26(11): 1630–1636
16 Zhou  L, Wang  L, Lu  L, Jiang  P, Sun  H, Wang  H. A novel target of microRNA-29, Ring1 and YY1-binding protein (Rybp), negatively regulates skeletal myogenesis. Journal of Biological Chemistry, 2012, 287(30): 25255–25265
https://doi.org/10.1074/jbc.M112.357053
17 Kalenik  J L, Chen  D, Bradley  M E. Yeast two-hybrid cloning of a novel zinc finger protein that interacts with the multifunctional transcription factor YY1. Nucleic Acids Research, 1997, 25(4): 843–849
18 Shi  Y, Seto  E, Chang  L S, Shenk  T. Transcriptional repression by YY1, a human GLI-Krüippel-related protein, and relief of repression by adenovirus E1A protein. Cell, 1991, 67(2): 377–388
https://doi.org/10.1016/0092-8674(91)90189-6
19 Lu  L, Zhou  L, Chen  E Z, Sun  K, Jiang  P, Wang  L, Su  X, Sun  H, Wang  H. A Novel YY1-miR-1 regulatory circuit in skeletal myogenesis revealed by genome-wide prediction of YY1-miRNA network. PLoS ONE, 2012, 7(2): e27596
https://doi.org/10.1371/journal.pone.0027596
20 Monin  G, Sellier  P. Pork of low technological quality with a normal rate of muscle pH fall in the immediate post-mortem period: the case of the Hampshire breed. Meat Science, 1985, 13(1): 49–63 
https://doi.org/10.1016/S0309-1740(85)80004-8
21 Sterten  H, Oksbjerg  N, Frøystein  T, EkkerA S, Kjos N P. Effects of fasting prior to slaughter on pH development and energy metabolism post-mortem in M. longissimus dorsi of pigs. Meat Science,  2010, 84(1): 93–100
22 Cunningham  J T, Rodgers  J T, Arlow  D H, Vazquez  F, Mootha  V K, Puigserver  P. mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature, 2007, 450(7170): 736–740
https://doi.org/10.1038/nature06322
23 Dummler  B, Tschopp  O, Hynx  D, Yang  Z Z, Dirnhofer  S, Hemmings  B A. Life with a single Isoform of Akt: mice lacking Akt2 and Akt3 are viable but display impaired glucose homeostasis and growth deficiencies. Molecular and Cellular Biology, 2006, 26(21): 8042–8051
https://doi.org/10.1128/MCB.00722-06
24 Blattler  S M, Cunningham  J T, Verdeguer  F, Chim  H, Haas  W, Liu  H, Romanino  K, Ruegg  M A, Gygi  S P, Shi  Y, Puigserver  P. Yin Yang 1 deficiency in skeletal muscle protects against rapamycin-induced diabetic-like symptoms through activation of insulin/IGF signaling. Cell Metabolism, 2012, 15(4): 505–517
https://doi.org/10.1016/j.cmet.2012.03.008
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed