Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

邮发代号 80-906

Frontiers of Agricultural Science and Engineering  2015, Vol. 2 Issue (4): 341-346   https://doi.org/10.15302/J-FASE-2015082
  本期目录
Cellulose aerogels decorated with multi-walled carbon nanotubes: preparation, characterization, and application for electromagnetic interference shielding
Jian LI(),Caichao WAN
Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
 全文: PDF(634 KB)   HTML
Abstract

Electromagnetic wave pollution has attracted extensive attention because of its ability to affect the operation of electronic machinery and endanger human health. In this work, the environmentally-friendly hybrid aerogels consisting of cellulose and multi-walled carbon nanotubes (MWCNTs) were fabricated. The aerogels have a low bulk density of 58.17 mg·cm3. The incorporation of MWCNTs leads to an improvement in the thermal stability. In addition, the aerogels show a high electromagnetic interference (EMI) SEtotal value of 19.4 dB. Meanwhile, the absorption-dominant shielding mechanism helps a lot to reduce secondary radiation, which is beneficial to develop novel eco-friendly EMI shielding materials.

Key wordscellulose aerogels    carbon nanotubes    electromagnetic interference shielding    composites
收稿日期: 2015-10-19      出版日期: 2016-01-19
Corresponding Author(s): Jian LI   
 引用本文:   
. [J]. Frontiers of Agricultural Science and Engineering, 2015, 2(4): 341-346.
Jian LI,Caichao WAN. Cellulose aerogels decorated with multi-walled carbon nanotubes: preparation, characterization, and application for electromagnetic interference shielding. Front. Agr. Sci. Eng. , 2015, 2(4): 341-346.
 链接本文:  
https://academic.hep.com.cn/fase/CN/10.15302/J-FASE-2015082
https://academic.hep.com.cn/fase/CN/Y2015/V2/I4/341
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 Liebner  F, Potthast  A, Rosenau  T, Haimer  E, Wendland  M. Cellulose aerogels: highly porous, ultra-lightweight materials. Holzforschung, 2008, 62(2): 129–135
https://doi.org/10.1515/HF.2008.051
2 Sescousse  R, Gavillon  R, Budtova  T. Aerocellulose from cellulose–ionic liquid solutions: preparation, properties and comparison with cellulose–NaOH and cellulose–NMMO routes. Carbohydrate Polymers, 2011, 83(4): 1766–1774
https://doi.org/10.1016/j.carbpol.2010.10.043
3 Pääkkö  M, Vapaavuori  J, Silvennoinen  R, Kosonen  H, Ankerfors  M, Lindström  T, Berglund  L A, Ikkala  O. Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter, 2008, 4(12): 2492–2499
https://doi.org/10.1039/b810371b
4 Wan  C, Li  J. Facile synthesis of well-dispersed superparamagnetic g-Fe2O3 nanoparticles encapsulated in three-dimensional architectures of cellulose aerogels and their applications for Cr (VI) removal from contaminated water. ACS Sustainable Chemistry & Engineering, 2015, 3(9): 2142–2152
https://doi.org/10.1021/acssuschemeng.5b00384
5 Wan  C, Li  J. Synthesis of well-dispersed magnetic CoFe2O4 nanoparticles in cellulose aerogels via a facile oxidative co-precipitation method. Carbohydrate Polymers, 2015, 134: 144–150
https://doi.org/10.1016/j.carbpol.2015.07.083
6 Wan  C, Lu  Y, Jin  C, Sun  Q, Li  J. A facile low-temperature hydrothermal method to prepare anatase titania/cellulose aerogels with strong photocatalytic activities for rhodamine B and methyl orange degradations. Journal of Nanomaterials, 2015, 2015: 717016
7 Wan  C, Li  J. Embedding ZnO nanorods into porous cellulose aerogels via a facile one-step low-temperature hydrothermal method. Materials & Design, 2015, 83: 620–625
https://doi.org/10.1016/j.matdes.2015.06.043
8 Baughman  R H, Zakhidov  A A, de Heer  W A. Carbon nanotubes-the route toward applications. Science, 2002, 297(5582): 787–792
https://doi.org/10.1126/science.1060928
9 Berber  S, Kwon  Y K, Tománek  D. Unusually high thermal conductivity of carbon nanotubes. Physical Review Letters, 2000, 84(20): 4613–4616
https://doi.org/10.1103/PhysRevLett.84.4613
10 Li  Q, Li  Y, Zhang  X, Chikkannanavar  S B, Zhao  Y, Dangelewicz  A M, Zheng  L, Doorn  S K, Jia  Q, Peterson  D E, Arendt  P N, Zhu  Y. Structure-dependent electrical properties of carbon nanotube fibers. Advanced Materials, 2007, 19(20): 3358–3363
https://doi.org/10.1002/adma.200602966
11 Zhang  H, Wang  Z, Zhang  Z, Wu  J, Zhang  J, He  J. Regenerated-cellulose/multiwalled-carbon nanotube composite fibers with enhanced mechanical properties prepared with the ionic liquid 1–allyl–3–methylimidazolium chloride. Advanced Materials, 2007, 19(5): 698–704
https://doi.org/10.1002/adma.200600442
12 Hsieh  T, Kinloch  A, Taylor  A, Kinloch  I. The effect of carbon nanotubes on the fracture toughness and fatigue performance of a thermosetting epoxy polymer. Journal of Materials Science, 2011, 46(23): 7525–7535
https://doi.org/10.1007/s10853-011-5724-0
13 Haggenmueller  R, Fischer  J E, Winey  K I. Single wall carbon nanotube/polyethylene nanocomposites: nucleating and templating polyethylene crystallites. Macromolecules, 2006, 39(8): 2964–2971
https://doi.org/10.1021/ma0527698
14 Muñoz  E, Suh  D S, Collins  S, Selvidge  M, Dalton  A B, Kim  B G, Razal  J M, Ussery  G, Rinzler  A G, Martínez  M T, Baughman  R H. Highly conducting carbon nanotube/polyethyleneimine composite fibers. Advanced Materials, 2005, 17(8): 1064–1067
https://doi.org/10.1002/adma.200401648
15 Chatterjee  T, Yurekli  K, Hadjiev  V G, Krishnamoorti  R. Single-walled carbon nanotube dispersions in poly(ethylene oxide). Advanced Functional Materials, 2005, 15(11): 1832–1838
https://doi.org/10.1002/adfm.200500290
16 Jin  Z, Pramoda  K, Xu  G, Goh  S H. Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly(methyl methacrylate) composites. Chemical Physics Letters, 2001, 337(1): 43–47
https://doi.org/10.1016/S0009-2614(01)00186-5
17 Chang  T, Jensen  L R, Kisliuk  A, Pipes  R, Pyrz  R, Sokolov  A. Microscopic mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposite. Polymer, 2005, 46(2): 439–444
https://doi.org/10.1016/j.polymer.2004.11.030
18 Shaffer  M S, Windle  A H. Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. Advanced Materials, 1999, 11(11): 937–941
https://doi.org/10.1002/(SICI)1521-4095(199908)11:11<937::AID-ADMA937>3.0.CO;2-9
19 Li  J, Wan  C, Lu  Y, Sun  Q. Fabrication of cellulose aerogel from wheat straw with strong absorptive capacity. Frontiers of Agricultural Science and Engineering, 2014, 1(1): 46–52
https://doi.org/10.15302/J-FASE-2014004
20 Wan  C, Lu  Y, Jiao  Y, Jin  C, Sun  Q, Li  J. Fabrication of hydrophobic, electrically conductive and flame-resistant carbon aerogels by pyrolysis of regenerated cellulose aerogels. Carbohydrate Polymers, 2015, 118: 115–118
https://doi.org/10.1016/j.carbpol.2014.11.010
21 Nishiyama  Y, Langan  P, Chanzy  H. Crystal structure and hydrogen-bonding system in cellulose Ib from synchrotron X-ray and neutron fiber diffraction. Journal of the American Chemical Society, 2002, 124(31): 9074–9082
https://doi.org/10.1021/ja0257319
22 Bele  M, Kodre  A, Arčon  I, Grdadolnik  J, Pejovnik  S, Besenhard  J O. Adsorption of cetyltrimethylammonium bromide on carbon black from aqueous solution. Carbon, 1998, 36(7): 1207–1212
https://doi.org/10.1016/S0008-6223(98)00099-2
23 Chetty  R, Kundu  S, Xia  W, Bron  M, Schuhmann  W, Chirila  V, Brandld  W, Reineckec  T, Muhlera  M. PtRu nanoparticles supported on nitrogen-doped multiwalled carbon nanotubes as catalyst for methanol electrooxidation. Electrochimica Acta, 2009, 54(17): 4208–4215
https://doi.org/10.1016/j.electacta.2009.02.073
24 Wan  J, Yan  X, Ding  J, Ren  R. A simple method for preparing biocompatible composite of cellulose and carbon nanotubes for the cell sensor. Sensors and Actuators. B, Chemical, 2010, 146(1): 221–225
https://doi.org/10.1016/j.snb.2010.02.037
25 Geetha  S, Satheesh Kumar  K, Rao  C R, Vijayan  M, Trivedi  D. EMI shielding: Methods and materials–A review. Journal of Applied Polymer Science, 2009, 112(4): 2073–2086
https://doi.org/10.1002/app.29812
26 Al-Saleh  M H, Saadeh  W H, Sundararaj  U. EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study. Carbon, 2013, 60: 146–156
https://doi.org/10.1016/j.carbon.2013.04.008
27 Liu  X, Yin  X, Kong  L, Li  Q, Liu  Y, Duan  W, Zhang  L, Cheng  L. Fabrication and electromagnetic interference shielding effectiveness of carbon nanotube reinforced carbon fiber/pyrolytic carbon composites. Carbon, 2014, 68: 501–510
https://doi.org/10.1016/j.carbon.2013.11.027
28 Hao  X, Yin  X, Zhang  L, Cheng  L. Dielectric, electromagnetic interference shielding and absorption properties of Si3N4–PyC composite ceramics. Journal of Materials Science and Technology, 2013, 29(3): 249–254
https://doi.org/10.1016/j.jmst.2013.01.011
29 Alimohammadi  F, Gashti  M P, Shamei  A. Functional cellulose fibers via polycarboxylic acid/carbon nanotube composite coating. Journal of Coatings Technology and Research, 2013, 10(1): 123–132 
https://doi.org/10.1007/s11998-012-9429-3
30 Song  W L, Fan  L Z, Cao  M S, Lu  M M, Wang  C Y, Wang  J, Chen  T T, Li  Y, Hou  Z L, Liu  J, Sun  Y P. Facile fabrication of ultrathin graphene papers for effective electromagnetic shielding. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2014, 2(25): 5057–5064
https://doi.org/10.1039/c4tc00517a
31 Chung  D. Materials for electromagnetic interference shielding. Journal of Materials Engineering and Performance, 2000, 9(3): 350–354
https://doi.org/10.1361/105994900770346042
32 Zhang  H B, Zheng  W G, Yan  Q, Jiang  Z G, Yu  Z Z. The effect of surface chemistry of graphene on rheological and electrical properties of polymethylmethacrylate composites. Carbon, 2012, 50(14): 5117–5125
https://doi.org/10.1016/j.carbon.2012.06.052
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed