1. State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, China 2. China-Australia Joint Research Centre for Abiotic and Biotic Stress Management, Northwest A&F University, Yangling 712100, China
Wheat stripe rust caused by Puccinia striiformis f. sp. tritici is one of the most devastating diseases of wheat worldwide and resistant cultivars are vital for its management. Therefore, investigating the heterozygosity of the pathogen is important because of rapid virulence changes in isolates heterozygous for avirulence/virulence. An isolate of P. striiformis f. sp. tritici was selfed on Berberis shensiana to determine the heterozygosity for avirulence/virulence loci. One hundred and twenty progeny isolates obtained from this selfing were phenotyped using 25 lines of wheat containing Yr genes and genotyped with 96 simple sequencing repeat markers, with 51 pathotypes and 55 multi-locus genotypes being identified. All of these were avirulent on lines with Yr5, Yr10, Yr15, Yr24 and Yr26 and virulent on lines with Yr17, Yr25 and YrA, indicating that the parental isolate was homozygously avirulent or homozygously virulent for these loci. Segregation was found for wheat lines with Yr1, Yr2, Yr4, Yr6, Yr7, Yr8, Yr9, Yr27, Yr28, Yr32, Yr43, Yr44, YrExp2, YrSp, YrTr1, YrTye and YrV23. The 17 cultivars to which the Pst was identified as heterozygous with respect to virulence/avirulence should not be given priority in breeding programs to obtain new resistant cultivars.
. [J]. Frontiers of Agricultural Science and Engineering, 2017, 4(1): 48-58.
Yuan TIAN,Gangming ZHAN,Xia LU,Jie ZHAO,Lili HUANG,Zhensheng KANG. Determination of heterozygosity for avirulence/virulence loci through sexual hybridization of Puccinia striiformis f. sp. tritici. Front. Agr. Sci. Eng. , 2017, 4(1): 48-58.
Avirulence (A) and virulence (V) of parental and progeny isolates of Pst on wheat lines with Yr genes
Yr4
Yr7
Yr8
Yr32
Yr43
YrExp2
YrSp
YrTr1
Yr1
Yr2
Yr6
Yr9
Yr27
Yr28
Yr44
YrTye
YrV23
Parent
1
A
A
A
A
A
A
A
A
V
V
V
V
V
V
V
V
V
Progeny
120
1
26
A
A
A
A
A
A
A
A
V
V
V
V
V
V
V
V
V
2
6
A
A
A
A
A
V
A
A
V
V
V
V
V
V
V
V
A
3
1
A
A
A
A
A
V
A
A
V
V
V
V
V
V
V
V
V
4
1
A
A
A
V
A
A
A
A
V
V
V
V
V
V
V
V
V
5
1
A
A
A
A
A
A
A
A
V
V
V
V
V
V
V
A
V
6
1
A
A
A
A
A
A
A
A
V
V
V
A
V
V
V
V
V
7
1
A
A
V
A
A
A
A
A
V
A
V
V
V
V
V
V
V
8
6
A
A
A
A
A
A
A
A
V
A
V
V
V
V
V
V
V
9
8
A
A
A
A
A
A
V
A
V
V
V
V
V
V
V
V
V
10
1
V
V
A
V
A
A
V
A
V
V
V
V
V
V
V
V
V
11
3
A
A
A
A
A
A
V
A
V
A
V
V
V
V
V
V
V
12
2
V
A
A
A
A
A
V
A
V
V
V
V
V
V
V
V
V
13
1
V
A
A
A
A
A
A
A
V
V
V
V
A
V
V
V
V
14
1
A
A
A
A
A
A
A
A
A
V
V
V
A
V
V
V
V
15
1
A
V
A
A
A
A
A
A
V
V
V
V
V
V
A
V
V
16
1
A
V
A
A
A
A
A
A
V
V
V
V
V
V
V
V
V
17
3
A
A
A
A
A
A
A
A
V
A
V
V
V
V
A
V
V
18
2
A
A
A
A
A
A
A
A
V
V
V
V
V
V
A
V
V
19
1
A
A
A
A
A
A
A
A
V
A
V
V
A
V
A
V
V
20
4
A
A
A
A
A
A
V
A
V
A
V
V
V
V
V
V
A
21
2
A
A
V
A
A
A
V
A
V
A
V
V
V
V
V
V
A
22
1
A
A
A
A
A
A
A
A
V
A
V
V
V
V
A
V
A
23
7
A
A
A
A
A
A
A
A
V
A
V
V
V
V
V
V
A
24
1
A
A
A
A
A
A
A
A
V
A
V
V
A
V
V
V
A
25
1
A
A
A
A
A
A
A
A
V
A
V
V
V
V
V
A
A
26
1
A
A
A
A
A
A
V
A
V
A
V
V
V
V
A
V
A
27
1
A
A
A
A
A
A
V
A
V
A
A
V
V
V
A
V
A
28
1
A
A
A
A
A
A
A
A
A
A
V
V
A
V
A
V
A
29
2
A
A
A
A
A
A
A
A
A
A
V
V
V
V
A
V
A
30
1
A
A
V
A
A
V
A
A
V
V
V
V
V
V
V
V
A
31
1
A
A
V
A
A
V
A
A
V
V
V
V
V
V
V
V
V
32
1
A
A
V
A
A
A
A
V
V
V
V
V
V
V
V
V
A
33
1
A
A
V
A
A
A
V
A
V
A
V
V
V
V
A
V
V
34
1
A
A
A
V
V
A
A
A
V
V
V
V
V
A
V
V
V
35
1
A
A
V
A
A
A
A
A
A
A
V
A
V
V
V
V
V
36
1
A
V
A
A
A
A
A
V
V
V
V
V
V
A
V
V
A
37
1
A
V
A
A
A
V
A
V
V
V
V
V
V
A
V
V
A
38
1
A
V
V
A
A
A
V
A
V
A
V
V
V
V
V
A
A
39
1
A
A
V
A
A
V
A
A
A
V
A
V
A
V
V
V
A
40
1
A
V
A
V
A
V
V
A
A
V
A
V
V
V
V
V
V
41
1
V
V
A
A
A
A
V
A
V
V
A
A
V
V
A
A
V
42
1
A
V
V
A
V
V
A
A
V
V
V
A
A
A
V
V
A
43
2
A
V
V
A
V
V
A
A
A
V
V
A
A
V
V
A
A
44
8
A
V
V
A
V
V
A
A
A
V
V
A
A
A
V
A
A
45
3
A
V
V
A
V
V
A
V
A
V
V
A
A
A
V
A
A
46
1
A
V
V
A
V
V
A
V
A
A
V
A
A
A
V
V
A
47
1
A
V
V
A
V
V
A
V
A
V
V
A
A
V
V
V
A
48
1
A
V
V
V
V
V
A
A
V
V
V
V
V
A
V
A
A
49
1
V
V
V
V
V
V
A
A
V
V
V
V
V
V
V
V
A
50
1
A
V
V
A
A
V
A
A
V
A
A
V
V
A
V
A
A
51
1
A
V
V
A
V
V
A
A
V
V
A
A
V
A
V
A
A
Tab.1
Wheat line with Yr gene
Infection type of parental isolate
Observed number of progeny isolates
Expected ratio
P
Avirulent
Virulent
Yr7
2
92
28
3:1
0.67
Yr8
0
90
30
3:1
1.00
Yr32
1
115
5
15:1
0.35
Yr43
2
100
20
13:3
0.56
YrSp
0
94
26
3:1
0.40
YrTr1
2
112
8
15:1
0.85
YrExp2
2
94
26
3:1
0.40
Yr4
2
115
5
15:1
0.35
Yr1
9
21
99
1:3
0.73
Yr2
9
40
80
7:9
0.03
Yr6
9
6
114
1:15
0.19
Yr9
9
20
100
3:13
0.56
Yr27
9
22
98
1:3
0.09
Yr44
9
15
105
3:13
0.08
YrTye
9
20
100
3:13
0.56
Yr28
9
19
101
3:13
0.41
YrV23
9
53
67
7:9
0.93
Tab.2
Fig.1
P
CAvr or cavr gene
Avirulence (CAvr)
Virulence (Cavr)
CAvr8
CAvrExp2
CAvrSp
Cavr27
CAvr7
0.00
0.00
0.61
CAvr8
0.00
0.53
CAvrExp2
0.10
Cavr1
0.00
Tab.3
Fig.2
Yr gene in the tested wheat line
Avirulence to virulence ratios
Present study
PST-127
Pinglan 17-7
Yr1
1: 3
homozygously virulent
homozygously virulent
Yr2
7: 9
homozygously virulent
homozygously virulent
Yr4
15: 1
–
1: 15
Yr5
homozygously avirulent
homozygously avirulent
homozygously avirulent
Yr6
1: 15
3: 1
3: 1
Yr7
3: 1
3: 1
homozygously virulent
Yr8
3: 1
3: 1
homozygously avirulent
Yr9
3: 13
homozygously virulent
homozygously virulent
Yr10
homozygously avirulent
1: 3
homozygously virulent
Yr15
homozygously avirulent
homozygously avirulent
homozygously avirulent
Yr17
homozygously virulent
1: 3
homozygously virulent
Yr24
homozygously avirulent
homozygously avirulent
homozygously virulent
Yr25
homozygously virulent
–
homozygously virulent
Yr26
homozygously avirulent
–
homozygously virulent
Yr27
1: 3
3: 1
1: 3
Yr28
3: 13
–
1: 3
Yr32
15: 1
homozygously avirulent
1: 15
Yr43
13: 3
3: 1
3: 1
Yr44
3: 13
3: 1
1: 15
YrA
homozygously virulent
–
homozygously virulent
YrExp2
3: 1
3: 1
homozygously virulent
YrSp
3: 1
homozygously avirulent
3: 1
YrTr1
15: 1
1: 3
homozygously avirulent
YrTye
3: 13
3: 1
–
YrV23
7: 9
–
homozygously virulent
Tab.4
1
Zheng W M, Huang L L, Huang J Q, Wang X J, Chen X M, Zhao J, Guo J, Zhuang H, Qiu C Z, Liu J, Liu H Q, Huang X L, Pei G L, Zhan G M, Tang C L, Cheng Y L, Liu M J, Zhang J S, Zhao Z T, Zhang S J, Han Q M, Han D J, Zhang H C, Zhao J, Gao X N, Wang J F, Ni P X, Dong W, Yang L F, Yang H M, Xu J R, Zhang G Y, Kang Z S. High genome heterozygosity and endemic genetic recombination in the wheat stripe rust fungus. Nature Communications, 2013, 4: 2673 https://doi.org/10.1038/ncomms3673
2
Chen X M. Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Canadian Journal of Plant Pathology, 2005, 27(3): 314–337 https://doi.org/10.1080/07060660509507230
3
Gassner G, Straib W. The determination of biological races of wheat yellow rust (Puccinia glumarum f. sp. tritici (Schmidt) Erikss.u. Henn.). Working from the Imperial Biological Institute for land and Forestry, Berlin, 1932, 20: 141–163 (in German)
4
Goddard M V. Cytological studies of Puccinia striiformis (yellow rust of wheat). Transactions of the British Mycological Society, 1976, 66(3): 433–437 https://doi.org/10.1016/S0007-1536(76)80213-6
5
Little R, Manners J G. Production of new physiological races in Puccinia striiformis (yellow rust) by heterokaryosis. Nature, 1967, 213(5074): 422 https://doi.org/10.1038/213422a0
Wang Z Y, Zhao J, Chen X M, Peng Y L, Ji J J, Zhao S L, Lv Y J, Huang L L, Kang Z S. Virulence variations of Puccinia striiformis f. sp. tritici isolates collected from Berberis spp. in China. Plant Disease, 2016, 100(1): 131–138 https://doi.org/10.1094/PDIS-12-14-1296-RE
Statler G D. Inheritance of pathogenicity of culture 70–1, Race 1, of Puccinia recondita tritici.Phytopathology, 1979, 69(6): 661–663 https://doi.org/10.1094/Phyto-69-661
10
Cheng P, Chen X M. Virulence and molecular analyses support asexual reproduction of Puccinia striiformis f. sp. tritici in the U.S. Pacific Northwest. Phytopathology, 2014, 104(11): 1208–1220 https://doi.org/10.1094/PHYTO-11-13-0314-R
11
Liu B, Chen X M, Kang Z S. Gene sequences reveal heterokaryotic variations and evolutionary mechanisms in Puccinia striiformis, the Stripe Rust pathogen. Open Journal of Genomics, 2012, 1(1): 1
12
Tian Y, Zhan G M, Chen X M, Tungruentragoon A, Lu X, Zhao J, Huang L L, Kang Z S. Virulence and simple sequence repeat marker segregation in a Puccinia striiformis f. sp. tritici population produced by selfing a Chinese isolate on Berberis shensiana.Phytopathology, 2016, 106(2): 185–191 https://doi.org/10.1094/PHYTO-07-15-0162-R
13
Zhao J, Wang M N, Chen X M, Kang Z S. Role of alternate hosts in epidemiology and pathogen variation of cereal rusts. Annual Review of Phytopathology, 2016, 54(1): 207–228 https://doi.org/10.1146/annurev-phyto-080615-095851
14
Newton M, Johnson T, Brown A M. A preliminary study on the hybridization of physiological forms of Puccinia graminis tritici.Scientia Agrícola, 1930, 10(11): 721–731
15
Waterhouse W L. A preliminary account of the origin of two new Australian physiological forms of Puccinia graminis tritici.Proceedings of the Linnean Society of New South Wales, 1929, 54: 96–106
16
Jin Y, Szabo L J, Carson M. Century-old mystery of Puccinia striiformis life history solved with the identification of Berberis as an alternate host. Phytopathology, 2010, 100(5): 432–435 https://doi.org/10.1094/PHYTO-100-5-0432
17
Wang M N, Chen X M. First report of Oregon grape (Mahonia aquifolium) as an alternate host for the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) under artificial inoculation. Plant Disease, 2013, 97(6): 839 https://doi.org/10.1094/PDIS-09-12-0864-PDN
18
Statler G D. Inheritance of virulence of culture 73–47 Puccinia recondita.Phytopathology, 1977, 67(7): 906–908 https://doi.org/10.1094/Phyto-67-906
Statler G D. Inheritance of virulence of Puccinia triticina culture X47, the F1 of the cross 71–112 x 70–1. Canadian Journal of Plant Pathology, 2000, 22(3): 276–279 https://doi.org/10.1080/07060660009500475
21
Wang M N, Wan A M, Chen X M. Genetic characterization of virulence/avirulence genes of Puccinia striiformis f. sp. tritici.Phytopathology, 2012, 102(S4): 132
22
Rodriguez-Algaba J, Walter S, Sørensen C K, Hovmøller M S, Justesen A F. Sexual structures and recombination of the wheat rust fungus Puccinia striiformis on Berberis vulgaris.Fungal Genetics and Biology, 2014, 70: 77–85 https://doi.org/10.1016/j.fgb.2014.07.005
Wellings C R. Puccinia striiformis in Australia: a review of the incursion, evolution, and adaptation of stripe rust in the period 1979–2006. Crop & Pasture Science, 2007, 58(6): 567–575 https://doi.org/10.1071/AR07130
25
McDowell J M, Woffenden B J. Plant disease resistance genes: recent insights and potential applications. Trends in Biotechnology, 2003, 21(4): 178–183 https://doi.org/10.1016/S0167-7799(03)00053-2
26
Yoshida K, Saitoh H, Fujisawa S, Kanzaki H, Matsumura H, Yoshida K, Tosa Y, Chuma I, Takano Y, Win J, Kamoun S, Terauchi R. Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. Plant Cell, 2009, 21(5): 1573–1591 https://doi.org/10.1105/tpc.109.066324
27
Zhao J, Wang L, Wang Z Y, Chen X M, Zhang H C, Yao J N, Zhan G M, Chen W, Huang L L, Kang Z S. Identification of eighteen Berberis species as alternate hosts of Puccinia striiformis f. sp. tritici and virulence variation in the pathogen isolates from natural infection of barberry plants in China. Phytopathology, 2013, 103(9): 927–934 https://doi.org/10.1094/PHYTO-09-12-0249-R
28
Zhan G M, Chen X M, Kang Z S, Huang L L, Wang M N, Wan A M, Cheng P, Cao S Q, Jin S L. Virulence and molecular comparison of Puccinia striiformis f. sp. tritici populations in China and the United States. Fungal Biology, 2012, 116(6): 643–653 https://doi.org/10.1016/j.funbio.2012.03.004
29
Line R F, Qayoum A. Virulence, aggressiveness, evolution and distribution of races of Puccinia striiformis (the cause of stripe rust of wheat) in North America, 1968–87. USDA Technical Bulletin, 1788, 1992: 61
30
Kosman E, Leonard K J. Conceptual analysis of methods applied to assessment of diversity within and distance between populations with asexual or mixed mode of reproduction. New Phytologist, 2007, 174(3): 683–696 https://doi.org/10.1111/j.1469-8137.2007.02031.x
31
Aljanabi S M, Martinez I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Research, 1997, 25(22): 4692–4693 https://doi.org/10.1093/nar/25.22.4692
32
Enjalbert J, Duan X, Giraud T, Vautrin D, De Vallavieille-Pope C, Solignac M. Isolation of twelve microsatellite loci, using an enrichment protocol, in the phytopathogenic fungus Puccinia striiformis f. sp. tritici.Molecular Ecology Notes, 2002, 2(4): 563–565 https://doi.org/10.1046/j.1471-8286.2002.00322.x
33
Bahri B, Leconte M, de Vallavieille-Pope C, Enjalbert J. Isolation of ten microsatellite loci in an EST library of the phytopathogenic fungus Puccinia striiformis f. sp. tritici.Conservation Genetics, 2009, 10(5): 1425–1428 https://doi.org/10.1007/s10592-008-9752-5
34
Chen C Q, Zheng W M, Buchenauer H, Huang L L, Lu N H, Kang Z S. Isolation of microsatellite loci from expressed sequence tags library of Puccinia striiformis f. sp. tritici.Molecular Ecology Resources, 2009, 9(1): 236–238 https://doi.org/10.1111/j.1755-0998.2008.02423.x
35
Cheng P, Chen X M, Xu L S, See D R. Development and characterization of expressed sequence tag-derived microsatellite markers for the wheat stripe rust fungus Puccinia striiformis f. sp. tritici.Molecular Ecology Resources, 2012, 12(4): 779–781
36
Luo H Y, Wang X J, Zhan G M, Wei G R, Zhou X L, Zhao J, Huang L L, Kang Z S. Genome-wide analysis of simple sequence repeats and efficient development of polymorphic SSR markers based on whole genome re-sequencing of multiple isolates of the Wheat Stripe Rust fungus. PLoS One, 2015, 10(6): e0130362 https://doi.org/10.1371/journal.pone.0130362
36a
Bailey J, Karaoglu H, Weling S C R, Park R F. Isolation and characterisation of 25 genome-derived simple sequence repeat markers for Puccinia striiformis f. sp. tritici. Molecular Ecology Resources, 2013, 13(4): 760–762
36b
Zhan G M, Wang F P, Luo H Y, Jiang S C, Zheng W M, Huang L L, Kang Z S. Screening for simple sequence repeat markers in Puccinia striiformis tritici based on genomic sequence. Journal of Zhejiang University-SCIENCE B, 2015, 16(8): 727–732
37
Holland M M, Parson W. GeneMarker HID: A reliable software tool for the analysis of forensic STR data. Journal of Forensic Sciences, 2011, 56(1): 29–35 https://doi.org/10.1111/j.1556-4029.2010.01565.x
38
Rohlf F. NTSYS-pc N T. Multivariate analysis system, Version 2.10 e.New York: Applied Biostatistics Incorprated, 2000
39
Zhang L Y, Wang S Q, Li H H, Deng Q M, Zheng A P, Li S C, Li P, Li Z L, Wang J K. Effects of missing marker and segeregating distortion on QTL mapping in F2 populations. Theoretical and Applied Genetics, 2010, 121(6): 1071–1082 https://doi.org/10.1007/s00122-010-1372-z
41
Bourras S, McNally K E, Ben-David R, Parlange F, Roffler S, Praz C R, Oberhaensli S, Menardo F, Stirmweis D, Frenkel Z, Schaefer L K, Flückiger S, Treier G, Herren G, Korol A B, Wicker T, Keller B. Multiple avirulence loci and allele-specific effector recognition control the Pm3 race-specific resistance of wheat to powdery mildew. Plant Cell, 2015, 27(10): 2991–3012
42
Zambino P J, Kubelik A R, Szabo L J. Gene action and linkage of avirulence genes to DNA markers in the rust fungus Puccinia graminis.Phytopathology, 2000, 90(8): 819–826 https://doi.org/10.1094/PHYTO.2000.90.8.819
43
Samborski D J, Dyck P L. Inheritance of virulence in Puccinia recondita on six backcross lines of wheat with single genes for resistance to leaf rust. Canadian Journal of Botany, 1976, 54(14): 1666–1671 https://doi.org/10.1139/b76-179
Wan A M, Chen X M. Virulence characterization of Puccinia striiformis f. sp. tritici using a new set of Yr single-gene line differentials in the United States in 2010. Plant Disease, 2014, 98(11): 1534–1542 https://doi.org/10.1094/PDIS-01-14-0071-RE
46
Liu T G, Peng Y L, Chen W Q, Zhang Z Y. First detection of virulence in Puccinia striiformis f. sp. tritici in China to resistance genes Yr24 (= Yr26) present in wheat cultivar Chuanmai 42. Plant Disease, 2010, 94(9): 1163 https://doi.org/10.1094/PDIS-94-9-1163C
47
Sharma-Poudyal D, Chen X, Wan A, Zhan G, Kang Z, Cao S, Jin S, Morgounov A, Akin B, Mert Z, Shah S J A, Bux H, Ashraf M, Sharma R C, Madariaga R, Puri K D, Wellings C, Xi K, Wanyera R, Manninger K, Ganzález M I, Koyda M, Sanin S, Patzek L J. Virulence characterization of international collections of the wheat stripe rust pathogen, Puccinia striiformis f. sp. tritici.Plant Disease, 2013, 97(3): 379–386 https://doi.org/10.1094/PDIS-01-12-0078-RE
48
Chen X M. High-temperature adult-plant resistance, key for sustainable control of stripe rust. American Journal of Plant Sciences, 2013, 4(3): 608–627 https://doi.org/10.4236/ajps.2013.43080