Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

邮发代号 80-906

Frontiers of Agricultural Science and Engineering  2017, Vol. 4 Issue (1): 48-58   https://doi.org/10.15302/J-FASE-2016114
  本期目录
Determination of heterozygosity for avirulence/virulence loci through sexual hybridization of Puccinia striiformis f. sp. tritici
Yuan TIAN1,Gangming ZHAN1,Xia LU1,Jie ZHAO1,2,Lili HUANG1,2,Zhensheng KANG1,2()
1. State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, China
2. China-Australia Joint Research Centre for Abiotic and Biotic Stress Management, Northwest A&F University, Yangling 712100, China
 全文: PDF(1226 KB)   HTML
Abstract

Wheat stripe rust caused by Puccinia striiformis f. sp. tritici is one of the most devastating diseases of wheat worldwide and resistant cultivars are vital for its management. Therefore, investigating the heterozygosity of the pathogen is important because of rapid virulence changes in isolates heterozygous for avirulence/virulence. An isolate of P. striiformis f. sp. tritici was selfed on Berberis shensiana to determine the heterozygosity for avirulence/virulence loci. One hundred and twenty progeny isolates obtained from this selfing were phenotyped using 25 lines of wheat containing Yr genes and genotyped with 96 simple sequencing repeat markers, with 51 pathotypes and 55 multi-locus genotypes being identified. All of these were avirulent on lines with Yr5, Yr10, Yr15, Yr24 and Yr26 and virulent on lines with Yr17, Yr25 and YrA, indicating that the parental isolate was homozygously avirulent or homozygously virulent for these loci. Segregation was found for wheat lines with Yr1, Yr2, Yr4, Yr6, Yr7, Yr8, Yr9, Yr27, Yr28, Yr32, Yr43, Yr44, YrExp2, YrSp, YrTr1, YrTye and YrV23. The 17 cultivars to which the Pst was identified as heterozygous with respect to virulence/avirulence should not be given priority in breeding programs to obtain new resistant cultivars.

Key wordsPuccinia striiformis f. sp. tritici    selfing    heterozygosity    virulence inheritance
收稿日期: 2016-09-16      出版日期: 2017-03-06
Corresponding Author(s): Zhensheng KANG   
 引用本文:   
. [J]. Frontiers of Agricultural Science and Engineering, 2017, 4(1): 48-58.
Yuan TIAN,Gangming ZHAN,Xia LU,Jie ZHAO,Lili HUANG,Zhensheng KANG. Determination of heterozygosity for avirulence/virulence loci through sexual hybridization of Puccinia striiformis f. sp. tritici. Front. Agr. Sci. Eng. , 2017, 4(1): 48-58.
 链接本文:  
https://academic.hep.com.cn/fase/CN/10.15302/J-FASE-2016114
https://academic.hep.com.cn/fase/CN/Y2017/V4/I1/48
VP Number of isolate Avirulence (A) and virulence (V) of parental and progeny isolates of Pst on wheat lines with Yr genes
Yr4 Yr7 Yr8 Yr32 Yr43 YrExp2 YrSp YrTr1 Yr1 Yr2 Yr6 Yr9 Yr27 Yr28 Yr44 YrTye YrV23
Parent 1 A A A A A A A A V V V V V V V V V
Progeny 120
1 26 A A A A A A A A V V V V V V V V V
2 6 A A A A A V A A V V V V V V V V A
3 1 A A A A A V A A V V V V V V V V V
4 1 A A A V A A A A V V V V V V V V V
5 1 A A A A A A A A V V V V V V V A V
6 1 A A A A A A A A V V V A V V V V V
7 1 A A V A A A A A V A V V V V V V V
8 6 A A A A A A A A V A V V V V V V V
9 8 A A A A A A V A V V V V V V V V V
10 1 V V A V A A V A V V V V V V V V V
11 3 A A A A A A V A V A V V V V V V V
12 2 V A A A A A V A V V V V V V V V V
13 1 V A A A A A A A V V V V A V V V V
14 1 A A A A A A A A A V V V A V V V V
15 1 A V A A A A A A V V V V V V A V V
16 1 A V A A A A A A V V V V V V V V V
17 3 A A A A A A A A V A V V V V A V V
18 2 A A A A A A A A V V V V V V A V V
19 1 A A A A A A A A V A V V A V A V V
20 4 A A A A A A V A V A V V V V V V A
21 2 A A V A A A V A V A V V V V V V A
22 1 A A A A A A A A V A V V V V A V A
23 7 A A A A A A A A V A V V V V V V A
24 1 A A A A A A A A V A V V A V V V A
25 1 A A A A A A A A V A V V V V V A A
26 1 A A A A A A V A V A V V V V A V A
27 1 A A A A A A V A V A A V V V A V A
28 1 A A A A A A A A A A V V A V A V A
29 2 A A A A A A A A A A V V V V A V A
30 1 A A V A A V A A V V V V V V V V A
31 1 A A V A A V A A V V V V V V V V V
32 1 A A V A A A A V V V V V V V V V A
33 1 A A V A A A V A V A V V V V A V V
34 1 A A A V V A A A V V V V V A V V V
35 1 A A V A A A A A A A V A V V V V V
36 1 A V A A A A A V V V V V V A V V A
37 1 A V A A A V A V V V V V V A V V A
38 1 A V V A A A V A V A V V V V V A A
39 1 A A V A A V A A A V A V A V V V A
40 1 A V A V A V V A A V A V V V V V V
41 1 V V A A A A V A V V A A V V A A V
42 1 A V V A V V A A V V V A A A V V A
43 2 A V V A V V A A A V V A A V V A A
44 8 A V V A V V A A A V V A A A V A A
45 3 A V V A V V A V A V V A A A V A A
46 1 A V V A V V A V A A V A A A V V A
47 1 A V V A V V A V A V V A A V V V A
48 1 A V V V V V A A V V V V V A V A A
49 1 V V V V V V A A V V V V V V V V A
50 1 A V V A A V A A V A A V V A V A A
51 1 A V V A V V A A V V A A V A V A A
Tab.1  
Wheat line with Yr gene Infection type of parental isolate Observed number of
progeny isolates
Expected ratio P
Avirulent Virulent
Yr7 2 92 28 3:1 0.67
Yr8 0 90 30 3:1 1.00
Yr32 1 115 5 15:1 0.35
Yr43 2 100 20 13:3 0.56
YrSp 0 94 26 3:1 0.40
YrTr1 2 112 8 15:1 0.85
YrExp2 2 94 26 3:1 0.40
Yr4 2 115 5 15:1 0.35
Yr1 9 21 99 1:3 0.73
Yr2 9 40 80 7:9 0.03
Yr6 9 6 114 1:15 0.19
Yr9 9 20 100 3:13 0.56
Yr27 9 22 98 1:3 0.09
Yr44 9 15 105 3:13 0.08
YrTye 9 20 100 3:13 0.56
Yr28 9 19 101 3:13 0.41
YrV23 9 53 67 7:9 0.93
Tab.2  
Fig.1  
P
CAvr or cavr gene Avirulence (CAvr) Virulence (Cavr)
CAvr8 CAvrExp2 CAvrSp Cavr27
CAvr7 0.00 0.00 0.61
CAvr8 0.00 0.53
CAvrExp2 0.10
Cavr1 0.00
Tab.3  
Fig.2  
Yr gene in the tested wheat line Avirulence to virulence ratios
Present study PST-127 Pinglan 17-7
Yr1 1: 3 homozygously virulent homozygously virulent
Yr2 7: 9 homozygously virulent homozygously virulent
Yr4 15: 1 1: 15
Yr5 homozygously avirulent homozygously avirulent homozygously avirulent
Yr6 1: 15 3: 1 3: 1
Yr7 3: 1 3: 1 homozygously virulent
Yr8 3: 1 3: 1 homozygously avirulent
Yr9 3: 13 homozygously virulent homozygously virulent
Yr10 homozygously avirulent 1: 3 homozygously virulent
Yr15 homozygously avirulent homozygously avirulent homozygously avirulent
Yr17 homozygously virulent 1: 3 homozygously virulent
Yr24 homozygously avirulent homozygously avirulent homozygously virulent
Yr25 homozygously virulent homozygously virulent
Yr26 homozygously avirulent homozygously virulent
Yr27 1: 3 3: 1 1: 3
Yr28 3: 13 1: 3
Yr32 15: 1 homozygously avirulent 1: 15
Yr43 13: 3 3: 1 3: 1
Yr44 3: 13 3: 1 1: 15
YrA homozygously virulent homozygously virulent
YrExp2 3: 1 3: 1 homozygously virulent
YrSp 3: 1 homozygously avirulent 3: 1
YrTr1 15: 1 1: 3 homozygously avirulent
YrTye 3: 13 3: 1
YrV23 7: 9 homozygously virulent
Tab.4  
1 Zheng W M, Huang L L, Huang J Q, Wang X J, Chen X M, Zhao J, Guo J, Zhuang H, Qiu C Z, Liu J, Liu H Q, Huang X L, Pei G L, Zhan G M, Tang C L, Cheng Y L, Liu M J, Zhang J S, Zhao Z T, Zhang S J, Han Q M, Han D J, Zhang H C, Zhao J, Gao X N, Wang J F, Ni P X, Dong W, Yang L F, Yang H M, Xu J R, Zhang G Y, Kang Z S. High genome heterozygosity and endemic genetic recombination in the wheat stripe rust fungus. Nature Communications, 2013, 4: 2673
https://doi.org/10.1038/ncomms3673
2 Chen X M. Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Canadian Journal of Plant Pathology, 2005, 27(3): 314–337
https://doi.org/10.1080/07060660509507230
3 Gassner G, Straib W. The determination of biological races of wheat yellow rust (Puccinia glumarum f. sp. tritici (Schmidt) Erikss.u. Henn.). Working from the Imperial Biological Institute for land and Forestry, Berlin, 1932, 20: 141–163 (in German)
4 Goddard M V. Cytological studies of Puccinia striiformis (yellow rust of wheat). Transactions of the British Mycological Society, 1976, 66(3): 433–437
https://doi.org/10.1016/S0007-1536(76)80213-6
5 Little R, Manners J G. Production of new physiological races in Puccinia striiformis (yellow rust) by heterokaryosis. Nature, 1967, 213(5074): 422
https://doi.org/10.1038/213422a0
6 Park R F, Wellings C R. Somatic hybridization in the Uredinales. Annual Review of Phytopathology, 2012, 50(1): 219–239
https://doi.org/10.1146/annurev-phyto-072910-095405
7 Wang Z Y, Zhao J, Chen X M, Peng Y L, Ji J J, Zhao S L, Lv Y J, Huang L L, Kang Z S. Virulence variations of Puccinia striiformis f. sp. tritici isolates collected from Berberis spp. in China. Plant Disease, 2016, 100(1): 131–138
https://doi.org/10.1094/PDIS-12-14-1296-RE
8 Flor H H. Current status of the gene-for-gene concept. Annual Review of Phytopathology, 1971, 9(1): 275–296
https://doi.org/10.1146/annurev.py.09.090171.001423
9 Statler G D. Inheritance of pathogenicity of culture 70–1, Race 1, of Puccinia recondita tritici. Phytopathology, 1979, 69(6): 661–663
https://doi.org/10.1094/Phyto-69-661
10 Cheng P, Chen X M. Virulence and molecular analyses support asexual reproduction of Puccinia striiformis f. sp. tritici in the U.S. Pacific Northwest. Phytopathology, 2014, 104(11): 1208–1220
https://doi.org/10.1094/PHYTO-11-13-0314-R
11 Liu B, Chen X M, Kang Z S. Gene sequences reveal heterokaryotic variations and evolutionary mechanisms in Puccinia striiformis, the Stripe Rust pathogen. Open Journal of Genomics, 2012, 1(1): 1
12 Tian Y, Zhan G M, Chen X M, Tungruentragoon A, Lu X, Zhao J, Huang L L, Kang Z S. Virulence and simple sequence repeat marker segregation in a Puccinia striiformis f. sp. tritici population produced by selfing a Chinese isolate on Berberis shensiana. Phytopathology, 2016, 106(2): 185–191
https://doi.org/10.1094/PHYTO-07-15-0162-R
13 Zhao J, Wang M N, Chen X M, Kang Z S. Role of alternate hosts in epidemiology and pathogen variation of cereal rusts. Annual Review of Phytopathology, 2016, 54(1): 207–228
https://doi.org/10.1146/annurev-phyto-080615-095851
14 Newton M, Johnson T, Brown A M. A preliminary study on the hybridization of physiological forms of Puccinia graminis tritici. Scientia Agrícola, 1930, 10(11): 721–731
15 Waterhouse W L. A preliminary account of the origin of two new Australian physiological forms of Puccinia graminis tritici. Proceedings of the Linnean Society of New South Wales, 1929, 54: 96–106
16 Jin Y, Szabo L J, Carson M. Century-old mystery of Puccinia striiformis life history solved with the identification of Berberis as an alternate host. Phytopathology, 2010, 100(5): 432–435
https://doi.org/10.1094/PHYTO-100-5-0432
17 Wang M N, Chen X M. First report of Oregon grape (Mahonia aquifolium) as an alternate host for the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) under artificial inoculation. Plant Disease, 2013, 97(6): 839
https://doi.org/10.1094/PDIS-09-12-0864-PDN
18 Statler G D. Inheritance of virulence of culture 73–47 Puccinia recondita. Phytopathology, 1977, 67(7): 906–908
https://doi.org/10.1094/Phyto-67-906
19 Statler G D. Inheritance of pathogenicity of progeny from an F1 culture of Melampsora lini. Journal of Phytopathology, 1990, 128(3): 184–190
https://doi.org/10.1111/j.1439-0434.1990.tb04264.x
20 Statler G D. Inheritance of virulence of Puccinia triticina culture X47, the F1 of the cross 71–112 x 70–1. Canadian Journal of Plant Pathology, 2000, 22(3): 276–279
https://doi.org/10.1080/07060660009500475
21 Wang M N, Wan A M, Chen X M. Genetic characterization of virulence/avirulence genes of Puccinia striiformis f. sp. tritici. Phytopathology, 2012, 102(S4): 132
22 Rodriguez-Algaba J, Walter S, Sørensen C K, Hovmøller M S, Justesen A F. Sexual structures and recombination of the wheat rust fungus Puccinia striiformis on Berberis vulgaris. Fungal Genetics and Biology, 2014, 70: 77–85
https://doi.org/10.1016/j.fgb.2014.07.005
23 Flor H H. Tests for allelism of rust-resistance genes in flax. Crop Science, 1965, 5(5): 415–418
https://doi.org/10.2135/cropsci1965.0011183X000500050013x
24 Wellings C R. Puccinia striiformis in Australia: a review of the incursion, evolution, and adaptation of stripe rust in the period 1979–2006. Crop & Pasture Science, 2007, 58(6): 567–575
https://doi.org/10.1071/AR07130
25 McDowell J M, Woffenden B J. Plant disease resistance genes: recent insights and potential applications. Trends in Biotechnology, 2003, 21(4): 178–183
https://doi.org/10.1016/S0167-7799(03)00053-2
26 Yoshida K, Saitoh H, Fujisawa S, Kanzaki H, Matsumura H, Yoshida K, Tosa Y, Chuma I, Takano Y, Win J, Kamoun S, Terauchi R. Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. Plant Cell, 2009, 21(5): 1573–1591
https://doi.org/10.1105/tpc.109.066324
27 Zhao J, Wang L, Wang Z Y, Chen X M, Zhang H C, Yao J N, Zhan G M, Chen W, Huang L L, Kang Z S. Identification of eighteen Berberis species as alternate hosts of Puccinia striiformis f. sp. tritici and virulence variation in the pathogen isolates from natural infection of barberry plants in China. Phytopathology, 2013, 103(9): 927–934
https://doi.org/10.1094/PHYTO-09-12-0249-R
28 Zhan G M, Chen X M, Kang Z S, Huang L L, Wang M N, Wan A M, Cheng P, Cao S Q, Jin S L. Virulence and molecular comparison of Puccinia striiformis f. sp. tritici populations in China and the United States. Fungal Biology, 2012, 116(6): 643–653
https://doi.org/10.1016/j.funbio.2012.03.004
29 Line R F, Qayoum A. Virulence, aggressiveness, evolution and distribution of races of Puccinia striiformis (the cause of stripe rust of wheat) in North America, 1968–87. USDA Technical Bulletin, 1788, 1992: 61
30 Kosman E, Leonard K J. Conceptual analysis of methods applied to assessment of diversity within and distance between populations with asexual or mixed mode of reproduction. New Phytologist, 2007, 174(3): 683–696
https://doi.org/10.1111/j.1469-8137.2007.02031.x
31 Aljanabi S M, Martinez I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Research, 1997, 25(22): 4692–4693
https://doi.org/10.1093/nar/25.22.4692
32 Enjalbert J, Duan X, Giraud T, Vautrin D, De Vallavieille-Pope C, Solignac M. Isolation of twelve microsatellite loci, using an enrichment protocol, in the phytopathogenic fungus Puccinia striiformis f. sp. tritici. Molecular Ecology Notes, 2002, 2(4): 563–565
https://doi.org/10.1046/j.1471-8286.2002.00322.x
33 Bahri B, Leconte M, de Vallavieille-Pope C, Enjalbert J. Isolation of ten microsatellite loci in an EST library of the phytopathogenic fungus Puccinia striiformis f. sp. tritici. Conservation Genetics, 2009, 10(5): 1425–1428
https://doi.org/10.1007/s10592-008-9752-5
34 Chen C Q, Zheng W M, Buchenauer H, Huang L L, Lu N H, Kang Z S. Isolation of microsatellite loci from expressed sequence tags library of Puccinia striiformis f. sp. tritici. Molecular Ecology Resources, 2009, 9(1): 236–238
https://doi.org/10.1111/j.1755-0998.2008.02423.x
35 Cheng P, Chen X M, Xu L S, See D R. Development and characterization of expressed sequence tag-derived microsatellite markers for the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Molecular Ecology Resources, 2012, 12(4): 779–781
36 Luo H Y, Wang X J, Zhan G M, Wei G R, Zhou X L, Zhao J, Huang L L, Kang Z S. Genome-wide analysis of simple sequence repeats and efficient development of polymorphic SSR markers based on whole genome re-sequencing of multiple isolates of the Wheat Stripe Rust fungus. PLoS One, 2015, 10(6): e0130362
https://doi.org/10.1371/journal.pone.0130362
36a Bailey J, Karaoglu H, Weling S C R, Park R F. Isolation and characterisation of 25 genome-derived simple sequence repeat markers for Puccinia striiformis f. sp. tritici. Molecular Ecology Resources, 2013, 13(4): 760–762
36b Zhan G M, Wang F P, Luo H Y, Jiang S C, Zheng W M, Huang L L, Kang Z S. Screening for simple sequence repeat markers in Puccinia striiformis tritici based on genomic sequence. Journal of Zhejiang University-SCIENCE B, 2015, 16(8): 727–732
37 Holland M M, Parson W. GeneMarker HID: A reliable software tool for the analysis of forensic STR data. Journal of Forensic Sciences, 2011, 56(1): 29–35
https://doi.org/10.1111/j.1556-4029.2010.01565.x
38 Rohlf F. NTSYS-pc N T. Multivariate analysis system, Version 2.10 e.New York: Applied Biostatistics Incorprated, 2000
39 Zhang L Y, Wang S Q, Li H H, Deng Q M, Zheng A P, Li S C, Li P, Li Z L, Wang J K. Effects of missing marker and segeregating distortion on QTL mapping in F2 populations. Theoretical and Applied Genetics, 2010, 121(6): 1071–1082
https://doi.org/10.1007/s00122-010-1372-z
41 Bourras S, McNally K E, Ben-David R, Parlange F, Roffler S, Praz C R, Oberhaensli S, Menardo F, Stirmweis D, Frenkel Z, Schaefer L K, Flückiger S, Treier G, Herren G, Korol A B, Wicker T, Keller B. Multiple avirulence loci and allele-specific effector recognition control the Pm3 race-specific resistance of wheat to powdery mildew. Plant Cell, 2015, 27(10): 2991–3012
42 Zambino P J, Kubelik A R, Szabo L J. Gene action and linkage of avirulence genes to DNA markers in the rust fungus Puccinia graminis. Phytopathology, 2000, 90(8): 819–826
https://doi.org/10.1094/PHYTO.2000.90.8.819
43 Samborski D J, Dyck P L. Inheritance of virulence in Puccinia recondita on six backcross lines of wheat with single genes for resistance to leaf rust. Canadian Journal of Botany, 1976, 54(14): 1666–1671
https://doi.org/10.1139/b76-179
44 Lawrence G J. Melampsora lini, rust of flax and linseed. Advances in Plant Pathology, 1988, 6: 313–331
https://doi.org/10.1016/B978-0-12-033706-4.50025-6
45 Wan A M, Chen X M. Virulence characterization of Puccinia striiformis f. sp. tritici using a new set of Yr single-gene line differentials in the United States in 2010. Plant Disease, 2014, 98(11): 1534–1542
https://doi.org/10.1094/PDIS-01-14-0071-RE
46 Liu T G, Peng Y L, Chen W Q, Zhang Z Y. First detection of virulence in Puccinia striiformis f. sp. tritici in China to resistance genes Yr24 (= Yr26) present in wheat cultivar Chuanmai 42. Plant Disease, 2010, 94(9): 1163
https://doi.org/10.1094/PDIS-94-9-1163C
47 Sharma-Poudyal D, Chen X, Wan A, Zhan G, Kang Z, Cao S, Jin S, Morgounov A, Akin B, Mert Z, Shah S J A, Bux H, Ashraf M, Sharma R C, Madariaga R, Puri K D, Wellings C, Xi K, Wanyera R, Manninger K, Ganzález M I, Koyda M, Sanin S, Patzek L J. Virulence characterization of international collections of the wheat stripe rust pathogen, Puccinia striiformis f. sp. tritici. Plant Disease, 2013, 97(3): 379–386
https://doi.org/10.1094/PDIS-01-12-0078-RE
48 Chen X M. High-temperature adult-plant resistance, key for sustainable control of stripe rust. American Journal of Plant Sciences, 2013, 4(3): 608–627
https://doi.org/10.4236/ajps.2013.43080
[1] FASE-16114-TY-Supplementary Material 1 Download
[2] FASE-16114-TY-Supplementary Material 2 Download
[3] FASE-16114-TY-Supplementary Material 3 Download
[4] FASE-16114-TY-Supplementary Material 4 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed