Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

邮发代号 80-906

Frontiers of Agricultural Science and Engineering  2017, Vol. 4 Issue (3): 319-326   https://doi.org/10.15302/J-FASE-2017161
  本期目录
Genome-wide analysis reveals selection for Chinese Rongchang pigs
Lei CHEN1, Shilin TIAN2, Long JIN2, Zongyi GUO1, Dan ZHU1, Lan JING1, Tiandong CHE2, Qianzi TANG2, Siqing CHEN1, Liang ZHANG1, Tinghuan ZHANG1, Zuohua LIU1, Jinyong WANG1(), Mingzhou LI2()
1. Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing Academy of Animal Sciences, Chongqing 402460, China
2. Institute of Animal Genetics and Breeding/College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
 全文: PDF(1463 KB)   HTML
Abstract

Livestock have undergone domestication and consequently strong selective pressure on genes or genomic regions that control desirable traits. To identify selection signatures in the genome of Chinese Rongchang pigs, we generated a total of about 170 Gb of DNA sequence data with about 6.4-fold coverage for each of six female individuals. By combining these data with the publically available genome data of 10 Asian wild boars, we identified 449 protein-coding genes with selection signatures in Rongchang pigs, which are mainly involved in growth and hormone binding, nervous system development, and drug metabolism. The accelerated evolution of these genes may contribute to the dramatic phenotypic differences between Rongchang pigs and Chinese wild boars. This study illustrated how domestication and subsequent artificial selection have shaped patterns of genetic variation in Rongchang pigs and provides valuable genetic resources that can enhance the use of pigs in agricultural production and biomedical studies.

Key wordsdomestication    genome    pig    re-sequencing    selection
收稿日期: 2016-12-20      出版日期: 2017-09-12
Corresponding Author(s): Jinyong WANG,Mingzhou LI   
 引用本文:   
. [J]. Frontiers of Agricultural Science and Engineering, 2017, 4(3): 319-326.
Lei CHEN, Shilin TIAN, Long JIN, Zongyi GUO, Dan ZHU, Lan JING, Tiandong CHE, Qianzi TANG, Siqing CHEN, Liang ZHANG, Tinghuan ZHANG, Zuohua LIU, Jinyong WANG, Mingzhou LI. Genome-wide analysis reveals selection for Chinese Rongchang pigs. Front. Agr. Sci. Eng. , 2017, 4(3): 319-326.
 链接本文:  
https://academic.hep.com.cn/fase/CN/10.15302/J-FASE-2017161
https://academic.hep.com.cn/fase/CN/Y2017/V4/I3/319
Fig.1  
Fig.2  
CategoryTerm descriptionInvolved gene numberP value
GO-BP:0010648Negative regulation of cell communication130.007
GO-BP:0007242Intracellular signaling cascade400.011
GO-BP:0048009Insulin-like growth factor receptor signaling pathway30.015
GO-MF:0017046Peptide hormone binding40.018
GO-MF:0042562Hormone binding50.019
GO-MF:0005158Insulin receptor binding40.020
GO-BP:0051960Regulation of nervous system development100.022
GO-BP:0032868Response to insulin stimulus60.033
GO-BP:0050769Positive regulation of neurogenesis50.037
GO-BP:0050767Regulation of neurogenesis80.040
GO-BP:0045664Regulation of neuron differentiation70.041
GO-BP:0010975Regulation of neuron projection development50.041
KEGG-Pathway: 00983Drug metabolism40.041
GO-BP:0006396RNA processing190.046
GO-BP:0010720Positive regulation of cell development50.047
GO-MF:0019899Enzyme binding180.049
GO-BP:0009725Response to hormone stimulus140.049
Tab.1  
Fig.3  
17 Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25(14): 1754–1760
https://doi.org/10.1093/bioinformatics/btp324 pmid: 19451168
18 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics, 2009, 25(16): 2078–2079
https://doi.org/10.1093/bioinformatics/btp352 pmid: 19505943
19 Huang W, Sherman B T, Lempicki R A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 2009, 4(1): 44–57
https://doi.org/10.1038/nprot.2008.211 pmid: 19131956
20 Patterson N, Price A L, Reich D. Population structure and eigenanalysis. PLoS Genetics, 2006, 2(12): e190
https://doi.org/10.1371/journal.pgen.0020190 pmid: 17194218
21 Nguyen D T, Lee K, Choi H, Choi M K, Le M T, Song N, Kim J H, Seo H G, Oh J W, Lee K, Kim T H, Park C. The complete swine olfactory subgenome: expansion of the olfactory gene repertoire in the pig genome. BMC Genomics, 2012, 13(1): 584
https://doi.org/10.1186/1471-2164-13-584 pmid: 23153364
22 Marchese S, Pes D, Scaloni A, Carbone V, Pelosi P. Lipocalins of boar salivary glands binding odours and pheromones. European Journal of Biochemistry, 1998, 252(3): 563–568
https://doi.org/10.1046/j.1432-1327.1998.2520563.x pmid: 9546674
1 Groenen M A M, Archibald A L, Uenishi H, Tuggle C K, Takeuchi Y, Rothschild M F, Rogel-Gaillard C, Park C, Milan D, Megens H J, Li S, Larkin D M, Kim H, Frantz L A F, Caccamo M, Ahn H, Aken B L, Anselmo A, Anthon C, Auvil L, Badaoui B, Beattie C W, Bendixen C, Berman D, Blecha F, Blomberg J, Bolund L, Bosse M, Botti S, Bujie Z, Bystrom M, Capitanu B, Carvalho-Silva D, Chardon P, Chen C, Cheng R, Choi S H, Chow W, Clark R C, Clee C, Crooijmans R P M A, Dawson H D, Dehais P, De Sapio F, Dibbits B, Drou N, Du Z Q, Eversole K, Fadista J, Fairley S, Faraut T, Faulkner G J, Fowler K E, Fredholm M, Fritz E, Gilbert J G R, Giuffra E, Gorodkin J, Griffin D K, Harrow J L, Hayward A, Howe K, Hu Z L, Humphray S J, Hunt T, Hornshøj H, Jeon J T, Jern P, Jones M, Jurka J, Kanamori H, Kapetanovic R, Kim J, Kim J H, Kim K W, Kim T H, Larson G, Lee K, Lee K T, Leggett R, Lewin H A, Li Y, Liu W, Loveland J E, Lu Y, Lunney J K, Ma J, Madsen O, Mann K, Matthews L, McLaren S, Morozumi T, Murtaugh M P, Narayan J, Truong Nguyen D, Ni P, Oh S J, Onteru S, Panitz F, Park E W, Park H S, Pascal G, Paudel Y, Perez-Enciso M, Ramirez-Gonzalez R, Reecy J M, Rodriguez-Zas S, Rohrer G A, Rund L, Sang Y, Schachtschneider K, Schraiber J G, Schwartz J, Scobie L, Scott C, Searle S, Servin B, Southey B R, Sperber G, Stadler P, Sweedler J V, Tafer H, Thomsen B, Wali R, Wang J, Wang J, White S, Xu X, Yerle M, Zhang G, Zhang J, Zhang J, Zhao S, Rogers J, Churcher C, Schook L B. Analyses of pig genomes provide insight into porcine demography and evolution. Nature, 2012, 491(7424): 393–398
https://doi.org/10.1038/nature11622 pmid: 23151582
23 Mak G K, Enwere E K, Gregg C, Pakarainen T, Poutanen M, Huhtaniemi I, Weiss S. Male pheromone-stimulated neurogenesis in the adult female brain: possible role in mating behavior. Nature Neuroscience, 2007, 10(8): 1003–1011
https://doi.org/10.1038/nn1928 pmid: 17603480
24 Larson G, Dobney K, Albarella U, Fang M, Matisoo-Smith E, Robins J, Lowden S, Finlayson H, Brand T, Willerslev E, Rowley-Conwy P, Andersson L, Cooper A. Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science, 2005, 307(5715): 1618–1621
https://doi.org/10.1126/science.1106927 pmid: 15761152
25 Albert F W, Somel M, Carneiro M, Aximu-Petri A, Halbwax M, Thalmann O, Blanco-Aguiar J A, Plyusnina I Z, Trut L, Villafuerte R, Ferrand N, Kaiser S, Jensen P, Pääbo S. A comparison of brain gene expression levels in domesticated and wild animals. PLoS Genetics, 2012, 8(9): e1002962
https://doi.org/10.1371/journal.pgen.1002962 pmid: 23028369
26 Amaral A J, Ferretti L, Megens H J, Crooijmans R P, Nie H, Ramos-Onsins S E, Perez-Enciso M, Schook L B, Groenen M A. Genome-wide footprints of pig domestication and selection revealed through massive parallel sequencing of pooled DNA. PLoS One, 2011, 6(4): e14782
https://doi.org/10.1371/journal.pone.0014782 pmid: 21483733
27 Li Y, Vonholdt B M, Reynolds A, Boyko A R, Wayne R K, Wu D D, Zhang Y P. Artificial selection on brain-expressed genes during the domestication of dog. Molecular Biology and Evolution, 2013, 30(8): 1867–1876
https://doi.org/10.1093/molbev/mst088 pmid: 23660689
28 Hare B, Plyusnina I, Ignacio N, Schepina O, Stepika A, Wrangham R, Trut L. Social cognitive evolution in captive foxes is a correlated by-product of experimental domestication. Current Biology, 2005, 15(3): 226–230
https://doi.org/10.1016/j.cub.2005.01.040 pmid: 15694305
29 Topál J, Gergely G, Erdohegyi A, Csibra G, Miklósi A. Differential sensitivity to human communication in dogs, wolves, and human infants. Science, 2009, 325(5945): 1269–1272
https://doi.org/10.1126/science.1176960 pmid: 19729660
30 Meyer U A, Zanger U M, Schwab M. Omics and drug response. Annual Review of Pharmacology and Toxicology, 2013, 53(53): 475–502
https://doi.org/10.1146/annurev-pharmtox-010510-100502 pmid: 23140244
2 Chen K, Baxter T, Muir W M, Groenen M A, Schook L B. Genetic resources, genome mapping and evolutionary genomics of the pig (Sus scrofa). International Journal of Biological Sciences, 2007, 3(3): 153–165
https://doi.org/10.7150/ijbs.3.153 pmid: 17384734
3 Rubin C J, Megens H J, Barrio A M, Maqbool K, Sayyab S, Schwochow D, Wang C, Carlborg O, Jern P, Jorgensen C B, Archibald A L, Fredholm M, Groenen M A M, Andersson L. Strong signatures of selection in the domestic pig genome. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(48): 19529–19536
https://doi.org/10.1073/pnas.1217149109 pmid: 23151514
4 Ai H, Fang X, Yang B, Huang Z, Chen H, Mao L, Zhang F, Zhang L, Cui L, He W, Yang J, Yao X, Zhou L, Han L, Li J, Sun S, Xie X, Lai B, Su Y, Lu Y, Yang H, Huang T, Deng W, Nielsen R, Ren J, Huang L. Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing. Nature Genetics, 2015, 47(3): 217–225
https://doi.org/10.1038/ng.3199 pmid: 25621459
5 Xia Q, Guo Y, Zhang Z, Li D, Xuan Z, Li Z, Dai F, Li Y, Cheng D, Li R, Cheng T, Jiang T, Becquet C, Xu X, Liu C, Zha X, Fan W, Lin Y, Shen Y, Jiang L, Jensen J, Hellmann I, Tang S, Zhao P, Xu H, Yu C, Zhang G, Li J, Cao J, Liu S, He N, Zhou Y, Liu H, Zhao J, Ye C, Du Z, Pan G, Zhao A, Shao H, Zeng W, Wu P, Li C, Pan M, Li J, Yin X, Li D, Wang J, Zheng H, Wang W, Zhang X, Li S, Yang H, Lu C, Nielsen R, Zhou Z, Wang J, Xiang Z, Wang J. Complete resequencing of 40 genomes reveals domestication events and genes in silkworm (Bombyx). Science, 2009, 326(5951): 433–436
https://doi.org/10.1126/science.1176620 pmid: 19713493
6 Rubin C J, Zody M C, Eriksson J, Meadows J R, Sherwood E, Webster M T, Jiang L, Ingman M, Sharpe T, Ka S, Hallböök F, Besnier F, Carlborg O, Bed’hom B, Tixier-Boichard M, Jensen P, Siegel P, Lindblad-Toh K, Andersson L. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature, 2010, 464(7288): 587–591
https://doi.org/10.1038/nature08832 pmid: 20220755
7 Shapiro M D, Kronenberg Z, Li C, Domyan E T, Pan H, Campbell M, Tan H, Huff C D, Hu H, Vickrey A I, Nielsen S C, Stringham S A, Hu H, Willerslev E, Gilbert M T, Yandell M, Zhang G, Wang J. Genomic diversity and evolution of the head crest in the rock pigeon. Science, 2013, 339(6123): 1063–1067
https://doi.org/10.1126/science.1230422 pmid: 23371554
8 Carneiro M, Rubin C J, Di Palma F, Albert F W, Alföldi J, Barrio A M, Pielberg G, Rafati N, Sayyab S, Turner-Maier J, Younis S, Afonso S, Aken B, Alves J M, Barrell D, Bolet G, Boucher S, Burbano H A, Campos R, Chang J L, Duranthon V, Fontanesi L, Garreau H, Heiman D, Johnson J, Mage R G, Peng Z, Queney G, Rogel-Gaillard C, Ruffier M, Searle S, Villafuerte R, Xiong A, Young S, Forsberg-Nilsson K, Good J M, Lander E S, Ferrand N, Lindblad-Toh K, Andersson L. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science, 2014, 345(6200): 1074–1079
https://doi.org/10.1126/science.1253714 pmid: 25170157
9 Axelsson E, Ratnakumar A, Arendt M L, Maqbool K, Webster M T, Perloski M, Liberg O, Arnemo J M, Hedhammar A, Lindblad-Toh K. The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature, 2013, 495(7441): 360–364
https://doi.org/10.1038/nature11837 pmid: 23354050
10 Daetwyler H D, Capitan A, Pausch H, Stothard P, van Binsbergen R, Brøndum R F, Liao X, Djari A, Rodriguez S C, Grohs C, Esquerré D, Bouchez O, Rossignol M N, Klopp C, Rocha D, Fritz S, Eggen A, Bowman P J, Coote D, Chamberlain A J, Anderson C, VanTassell C P, Hulsegge I, Goddard M E, Guldbrandtsen B, Lund M S, Veerkamp R F, Boichard D A, Fries R, Hayes B J. Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle. Nature Genetics, 2014, 46(8): 858–865
https://doi.org/10.1038/ng.3034 pmid: 25017103
11 Li M, Tian S, Jin L, Zhou G, Li Y, Zhang Y, Wang T, Yeung C K, Chen L, Ma J, Zhang J, Jiang A, Li J, Zhou C, Zhang J, Liu Y, Sun X, Zhao H, Niu Z, Lou P, Xian L, Shen X, Liu S, Zhang S, Zhang M, Zhu L, Shuai S, Bai L, Tang G, Liu H, Jiang Y, Mai M, Xiao J, Wang X, Zhou Q, Wang Z, Stothard P, Xue M, Gao X, Luo Z, Gu Y, Zhu H, Hu X, Zhao Y, Plastow G S, Wang J, Jiang Z, Li K, Li N, Li X, Li R. Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. Nature Genetics, 2013, 45(12): 1431–1438
https://doi.org/10.1038/ng.2811 pmid: 24162736
12 Li M, Chen L, Tian S, Lin Y, Tang Q, Zhou X, Li D, Yeung C K L, Che T, Jin L, Fu Y, Ma J, Wang X, Jiang A, Lan J, Pan Q, Liu Y, Luo Z, Guo Z, Liu H, Zhu L, Shuai S, Tang G, Zhao J, Jiang Y, Bai L, Zhang S, Mai M, Li C, Wang D, Gu Y, Wang G, Lu H, Li Y, Zhu H, Li Z, Li M, Gladyshev V N, Jiang Z, Zhao S, Wang J, Li R, Li X. Comprehensive variation discovery and recovery of missing sequence in the pig genome using multiple de novo assemblies. Genome Research, 2017, 27(5): 865–874
https://doi.org/10.1101/gr.207456.116 pmid: 27646534
13 Fu Y, Li C, Tang Q, Tian S, Jin L, Chen J, Li M, Li C. Genomic analysis reveals selection in Chinese native black pig. Scientific Reports, 2016, 6(1): 36354
https://doi.org/10.1038/srep36354 pmid: 27808243
14 Li M, Tian S, Yeung C K, Meng X, Tang Q, Niu L, Wang X, Jin L, Ma J, Long K, Zhou C, Cao Y, Zhu L, Bai L, Tang G, Gu Y, Jiang A, Li X, Li R. Whole-genome sequencing of Berkshire (European native pig) provides insights into its origin and domestication. Scientific Reports, 2014, 4(4): 4678
pmid: 24728479
15 Bosse M, Megens H J, Frantz L A, Madsen O, Larson G, Paudel Y, Duijvesteijn N, Harlizius B, Hagemeijer Y, Crooijmans R P, Groenen M A. Genomic analysis reveals selection for Asian genes in European pigs following human-mediated introgression. Nature Communications, 2014, 5: 4392
https://doi.org/10.1038/ncomms5392 pmid: 25025832
16 Frantz L A, Schraiber J G, Madsen O, Megens H J, Bosse M, Paudel Y, Semiadi G, Meijaard E, Li N, Crooijmans R P, Archibald A L, Slatkin M, Schook L B, Larson G, Groenen M A. Genome sequencing reveals fine scale diversification and reticulation history during speciation in Sus. Genome Biology, 2013, 14(9): R107
https://doi.org/10.1186/gb-2013-14-9-r107 pmid: 24070215
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed