1. Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China 2. The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China 3. College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
Neutrophils are vital components of defense mechanisms against invading pathogens and are closely linked with the individual antiviral capacity of pigs and other mammals. Neutrophilia is a well-known clinical characteristic of viral and bacterial infections. Using Affymetrix porcine genome microarrays, we investigated the gene expression profiles associated with neutrophil variation in porcine peripheral blood before and after polyriboinosinic-polyribocytidylic acid stimulation. Transcriptomic analysis showed 796 differentially expressed genes (DEGs) in extreme response (ER) pigs and 192 DEGs in moderate response (MR) pigs. Most DEGs were related to immune responses, included MXD1, CXCR4, CREG1, MyD88, CD14, TLR2, TLR4, IRF3 and IRF7. Gene ontology analysis indicated that the DEGs of both ER and MR pigs were involved in common biological processes, such as cell proliferation, growth regulation, immune response, inflammatory response and cell activation. The ER and MR groups also showed differences in DEGs involved in biological processes. DEGs involved in cell division and cell cycle were specifically found in the ER pigs, whereas DEGs involved in cell migration were specifically found in the MR pigs. The study provides a basic understanding of the molecular basis for the antiviral capacity of pigs and other mammals.
Vissche A H, Janss L L G, Niewold T A, de Greef K H. Disease incidence and immunological traits for the selection of healthy pigs. A review. Veterinary Quarterly, 2002, 24(1): 29–34 https://doi.org/10.1080/01652176.2002.9695121
pmid: 11924559
Mócsai A. Diverse novel functions of neutrophils in immunity, inflammation, and beyond. Journal of Experimental Medicine, 2013, 210(7): 1283–1299 https://doi.org/10.1084/jem.20122220
pmid: 23825232
Cham B, Bonilla M A, Winkelstein J. Neutropenia associated with primary immunodeficiency syndromes.Seminars in Hematology , 2002, 39(2): 107–112 https://doi.org/10.1053/shem.2002.31916
pmid: 11957193
7
Rezaei N, Moazzami K, Aghamohammadi A, Klein C. Neutropenia and primary immunodeficiency diseases. International Reviews of Immunology, 2009, 28(5): 335–366 https://doi.org/10.1080/08830180902995645
pmid: 19811314
8
Stevens B, Maxson J, Tyner J, Smith C A, Gutman J A, Robinson W, Jordan C T, Lee C K, Swisshelm K, Tobin J, Wei Q, Schowinsky J, Rinella S, Lee H G, Pollyea D A. Clonality of neutrophilia associated with plasma cell neoplasms: report of a SETBP1 mutation and analysis of a single institution series. Leukemia & Lymphoma, 2016, 57(4): 927–934 https://doi.org/10.3109/10428194.2015.1094697
pmid: 26389776
9
Su Z, Mao Y P, OuYang P Y, Tang J, Xie F Y. Initial hyperleukocytosis and neutrophilia in nasopharyngeal carcinoma: incidence and prognostic impact. PLoS One, 2015, 10(9): e0136752 https://doi.org/10.1371/journal.pone.0136752
pmid: 26336064
10
Fei M, Bhatia S, Oriss T B, Yarlagadda M, Khare A, Akira S, Saijo S, Iwakura Y, Fallert Junecko B A, Reinhart T A, Foreman O, Ray P, Kolls J, Ray A. TNF-α from inflammatory dendritic cells (DCs) regulates lung IL-17A/IL-5 levels and neutrophilia versus eosinophilia during persistent fungal infection. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(13): 5360–5365 https://doi.org/10.1073/pnas.1015476108
pmid: 21402950
11
Roos A B, Sethi S, Nikota J, Wrona C T, Dorrington M G, Sandén C, Bauer C M, Shen P, Bowdish D, Stevenson C S, Erjefält J S, Stampfli M R. IL-17A and the promotion of neutrophilia in acute exacerbation of chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine, 2015, 192(4): 428–437 https://doi.org/10.1164/rccm.201409-1689OC
pmid: 26039632
12
Ubags N D, Vernooy J H, Burg E, Hayes C, Bement J, Dilli E, Zabeau L, Abraham E, Poch K R, Nick J A, Dienz O, Zuñiga J, Wargo M J, Mizgerd J P, Tavernier J, Rincón M, Poynter M E, Wouters E F, Suratt B T. The role of leptin in the development of pulmonary neutrophilia in infection and acute lung injury. Critical Care Medicine, 2014, 42(2): e143–e151 https://doi.org/10.1097/CCM.0000000000000048
pmid: 24231757
Kohmura K, Miyakawa Y, Kameyama K, Kizaki M, Ikeda Y. Granulocyte colony stimulating factor-producing multiple myeloma associated with neutrophilia. Leukemia & Lymphoma, 2004, 45(7): 1475–1479 https://doi.org/10.1080/10428190310001645870
pmid: 15359652
15
Fu J J, Baines K J, Wood L G, Gibson P G. Systemic inflammation is associated with differential gene expression and airway neutrophilia in asthma. OMICS: A Journal of Integrative Biology, 2013, 17(4): 187–199 https://doi.org/10.1089/omi.2012.0104
pmid: 23438328
16
Biggar W D, Bohn D, Kent G. Neutrophil circulation and release from bone marrow during hypothermia. Infection and Immunity, 1983, 40(2): 708–712
pmid: 6840858
17
Chabot-Roy G, Willson P, Segura M, Lacouture S, Gottschalk M. Phagocytosis and killing of Streptococcus suis by porcine neutrophils.Microbial Pathogenesis , 2006, 41(1): 21–32 https://doi.org/10.1016/j.micpath.2006.04.001
pmid: 16714092
18
Baarsch M J, Foss D L, Murtaugh M P. Pathophysiologic correlates of acute porcine pleuropneumonia. American Journal of Veterinary Research, 2000, 61(6): 684–690 https://doi.org/10.2460/ajvr.2000.61.684
pmid: 10850846
19
Ichinohe T, Watanabe I, Ito S, Fujii H, Moriyama M, Tamura S, Takahashi H, Sawa H, Chiba J, Kurata T, Sata T, Hasegawa H. Synthetic double-stranded RNA poly(I:C) combined with mucosal vaccine protects against influenza virus infection. Journal of Virology, 2005, 79(5): 2910–2919 https://doi.org/10.1128/JVI.79.5.2910-2919.2005
pmid: 15709010
20
Fortier M E, Kent S, Ashdown H, Poole S, Boksa P, Luheshi G N. The viral mimic, polyinosinic:polycytidylic acid, induces fever in rats via an interleukin-1-dependent mechanism. Ajp Regulatory Integrative & Comparative Physiology, 2004, 287(4): R759–R766 https://doi.org/10.1152/ajpregu.00293.2004
pmid: 15205185
21
Matsumoto M, Seya T. TLR3: interferon induction by double-stranded RNA including poly(I:C). Advanced Drug Delivery Reviews, 2008, 60(7): 805–812 https://doi.org/10.1016/j.addr.2007.11.005
pmid: 18262679
22
Wang H, Hou Y, Guo J, Chen H, Liu X, Wu Z, Zhao S, Zhu M. Transcriptomic landscape for lymphocyte count variation in poly I:C-induced porcine peripheral blood. Animal Genetics, 2016, 47(1): 49–61 https://doi.org/10.1111/age.12379
pmid: 26607402
23
Cunningham C, Campion S, Teeling J, Felton L, Perry V H. The sickness behaviour and CNS inflammatory mediator profile induced by systemic challenge of mice with synthetic double-stranded RNA (poly I:C). Brain, Behavior, and Immunity, 2007, 21(4): 490–502 https://doi.org/10.1016/j.bbi.2006.12.007
pmid: 17321719
24
Farina G A, York M R, Di Marzio M, Collins C A, Meller S, Homey B, Rifkin I R, Marshak-Rothstein A, Radstake T R, Lafyatis R. Poly(I:C) drives type I IFN- and TGF b-mediated inflammation and dermal fibrosis simulating altered gene expression in systemic sclerosis. Journal of Investigative Dermatology, 2010, 130(11): 2583–2593 https://doi.org/10.1038/jid.2010.200
pmid: 20613770
25
Kimura G, Ueda K, Eto S, Watanabe Y, Masuko T, Kusama T, Barnes P J, Ito K, Kizawa Y. Toll-like receptor 3 stimulation causes corticosteroid-refractory airway neutrophilia and hyperresponsiveness in mice. Chest, 2013, 144(1): 99–105 https://doi.org/10.1378/chest.12-2610
pmid: 23348232
Jovanović B, Goetz F W, Goetz G W, Palić D. Immunological stimuli change expression of genes and neutrophil function in fathead minnow Pimephales promelas Rafinesque. Journal of Fish Biology, 2011, 78(4): 1054–1072 https://doi.org/10.1111/j.1095-8649.2011.02919.x
pmid: 21463307
28
Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball C A, Causton H C, Gaasterland T, Glenisson P, Holstege F C, Kim I F, Markowitz V, Matese J C, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nature Genetics, 2001, 29(4): 365–371 https://doi.org/10.1038/ng1201-365
pmid: 11726920
Smyth G K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics & Molecular Biology, 2004, 3: Article3
31
Huang W, Sherman B T, Lempicki R A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research, 2009, 37(1): 1–13 https://doi.org/10.1093/nar/gkn923
pmid: 19033363
32
Oliveros J C. VENNY. An interactive tool for comparing lists with Venn Diagrams. , 2016-2
33
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods, 2001, 25(4): 402–408 https://doi.org/10.1006/meth.2001.1262
pmid: 11846609
34
Poortinga G, Hannan K M, Snelling H, Walkley C R, Jenkins A, Sharkey K, Wall M, Brandenburger Y, Palatsides M, Pearson R B, McArthur G A, Hannan R D. MAD1 and c-MYC regulate UBF and rDNA transcription during granulocyte differentiation. EMBO Journal, 2004, 23(16): 3325–3335 https://doi.org/10.1038/sj.emboj.7600335
pmid: 15282543
35
Rottmann S, Menkel A R, Bouchard C, Mertsching J, Loidl P, Kremmer E, Eilers M, Lüscher-Firzlaff J, Lilischkis R, Lüscher B. Mad1 function in cell proliferation and transcriptional repression is antagonized by cyclin E/CDK2. Journal of Biological Chemistry, 2005, 280(16): 15489–15492 https://doi.org/10.1074/jbc.C400611200
pmid: 15722557
36
Zhou Z, Wang N, Woodson S E, Dong Q, Wang J, Liang Y, Rijnbrand R, Wei L, Nichols J E, Guo J T, Holbrook M R, Lemon S M, Li K. Antiviral activities of ISG20 in positive-strand RNA virus infections. Virology, 2011, 409(2): 175–188 https://doi.org/10.1016/j.virol.2010.10.008
pmid: 21036379
37
Lace M J, Anson J R, Haugen T H, Turek L P. Interferon regulatory factor (IRF)-2 activates the HPV-16 E6-E7 promoter in keratinocytes. Virology, 2010, 399(2): 270–279 https://doi.org/10.1016/j.virol.2009.12.025
pmid: 20129639
38
Cui L, Deng Y, Rong Y, Lou W, Mao Z, Feng Y, Xie D, Jin D. IRF-2 is over-expressed in pancreatic cancer and promotes the growth of pancreatic cancer cells. Tumour Biology, 2012, 33(1): 247–255 https://doi.org/10.1007/s13277-011-0273-3
pmid: 22119988
39
Strezoska Z, Pestov D G, Lau L F. Functional inactivation of the mouse nucleolar protein Bop1 inhibits multiple steps in pre-rRNA processing and blocks cell cycle progression. Journal of Biological Chemistry, 2002, 277(33): 29617–29625 https://doi.org/10.1074/jbc.M204381200
pmid: 12048210
40
Pestov D G, Strezoska Z, Lau L F. Evidence of p53-dependent cross-talk between ribosome biogenesis and the cell cycle: effects of nucleolar protein Bop1 on G(1)/S transition. Molecular and Cellular Biology, 2001, 21(13): 4246–4255 https://doi.org/10.1128/MCB.21.13.4246-4255.2001
pmid: 11390653
41
Ma Q, Jones D, Springer T A. The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment. Immunity, 1999, 10(4): 463–471 https://doi.org/10.1016/S1074-7613(00)80046-1
pmid: 10229189
42
Strydom N, Rankin S M. Regulation of circulating neutrophil numbers under homeostasis and in disease. Journal of Innate Immunity, 2013, 5(4): 304–314 https://doi.org/10.1159/000350282
pmid: 23571274
43
Eash K J, Means J M, White D W, Link D C. CXCR4 is a key regulator of neutrophil release from the bone marrow under basal and stress granulopoiesis conditions. Blood, 2009, 113(19): 4711–4719 https://doi.org/10.1182/blood-2008-09-177287
pmid: 19264920
44
Chen D, Zhang T L, Wang L M. The association of CSF-1 gene polymorphism with chronic periodontitis in the Han Chinese population. Journal of Periodontology, 2014, 85(8): e304–e312 https://doi.org/10.1902/jop.2014.130688
pmid: 24592910
45
Yan C, Fang P, Zhang H, Tao J, Tian X, Li Y, Zhang J, Sun M, Li S, Wang H, Han Y. CREG1 promotes angiogenesis and neovascularization. Frontiers in Bioscience, 2014, 19(7): 1151–1161 https://doi.org/10.2741/4272
pmid: 24896341
46
Martin C, Burdon P C, Bridger G, Gutierrez-Ramos J C, Williams T J, Rankin S M. Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity, 2003, 19(4): 583–593 https://doi.org/10.1016/S1074-7613(03)00263-2
pmid: 14563322
47
Burdon P C, Martin C, Rankin S M. The CXC chemokine MIP-2 stimulates neutrophil mobilization from the rat bone marrow in a CD49d-dependent manner. Blood, 2005, 105(6): 2543–2548 https://doi.org/10.1182/blood-2004-08-3193
pmid: 15542579
48
Płóciennikowska A, Hromada-Judycka A, Borzęcka K, Kwiatkowska K. Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling. Cellular and Molecular Life Sciences, 2015, 72(3): 557–581 https://doi.org/10.1007/s00018-014-1762-5
pmid: 25332099
Ioannou S, Voulgarelis M. Toll-like receptors, tissue injury, and tumourigenesis. Mediators of Inflammation, 2010, 2010(9629351): 60–68
pmid: 20871832
52
Loiarro M, Volpe E, Ruggiero V, Gallo G, Furlan R, Maiorino C, Battistini L, Sette C. Mutational analysis identifies residues crucial for homodimerization of myeloid differentiation factor 88 (MyD88) and for its function in immune cells. Journal of Biological Chemistry, 2013, 288(42): 30210–30222 https://doi.org/10.1074/jbc.M113.490946
pmid: 24019529
53
Clark S R, Ma A C, Tavener S A, McDonald B, Goodarzi Z, Kelly M M, Patel K D, Chakrabarti S, McAvoy E, Sinclair G D, Keys E M, Allen-Vercoe E, Devinney R, Doig C J, Green F H, Kubes P. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nature Medicine, 2007, 13(4): 463–469 https://doi.org/10.1038/nm1565
pmid: 17384648
54
McAvoy E F, McDonald B, Parsons S A, Wong C H, Landmann R, Kubes P. The role of CD14 in neutrophil recruitment within the liver microcirculation during endotoxemia. Journal of Immunology, 2011, 186(4): 2592–2601 https://doi.org/10.4049/jimmunol.1002248
pmid: 21217012
55
Haziot A, Tsuberi B Z, Goyert S M. Neutrophil CD14: biochemical properties and role in the secretion of tumor necrosis factor-alpha in response to lipopolysaccharide. Journal of Immunology, 1993, 150(12): 5556–5565
pmid: 7685797
56
Serwacka A, Protaziuk T, Zagozda M, Popow A M, Kierzkiewicz M, Manitius J, Myśliwiec M, Daniewska D, Gołebiewski S, Rydzewska-Rosołowska A, Flisiński M, Stępień K, Rydzewska G, Olszewski W L, Rydzewski A. Lack of effect of the CD14 promoter gene C-159T polymorphism on nutritional status parameters in hemodialysis patients. Medical Science Monitor, 2011, 17(2): CR117–CR121 https://doi.org/10.12659/MSM.881397
pmid: 21278688
57
Janova H, Böttcher C, Holtman I R, Regen T, van Rossum D, Götz A, Ernst A S, Fritsche C, Gertig U, Saiepour N, Gronke K, Wrzos C, Ribes S, Rolfes S, Weinstein J, Ehrenreich H, Pukrop T, Kopatz J, Stadelmann C, Salinas-Riester G, Weber M S, Prinz M, Brück W, Eggen B J, Boddeke H W, Priller J, Hanisch U K. CD14 is a key organizer of microglial responses to CNS infection and injury. Glia, 2016, 64(4): 635–649 https://doi.org/10.1002/glia.22955
pmid: 26683584
Luster A D, Alon R, von Andrian U H. Immune cell migration in inflammation: present and future therapeutic targets. Nature Immunology, 2005, 6(12): 1182–1190 https://doi.org/10.1038/ni1275
pmid: 16369557
Nordenfelt P, Tapper H. Phagosome dynamics during phagocytosis by neutrophils. Journal of Leukocyte Biology, 2011, 90(2): 271–284 https://doi.org/10.1189/jlb.0810457
pmid: 21504950
64
Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Frontiers in Immunology, 2014, 5(461): 461
pmid: 25309543
Hiscott J. Triggering the innate antiviral response through IRF-3 activation. Journal of Biological Chemistry, 2007, 282(21): 15325–15329 https://doi.org/10.1074/jbc.R700002200
pmid: 17395583
67
Sato M, Suemori H, Hata N, Asagiri M, Ogasawara K, Nakao K, Nakaya T, Katsuki M, Noguchi S, Tanaka N, Taniguchi T. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-alpha/beta gene induction. Immunity, 2000, 13(4): 539–548 https://doi.org/10.1016/S1074-7613(00)00053-4
pmid: 11070172
68
Kurt-Jones E A, Popova L, Kwinn L, Haynes L M, Jones L P, Tripp R A, Walsh E E, Freeman M W, Golenbock D T, Anderson L J, Finberg R W. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nature Immunology, 2000, 1(5): 398–401 https://doi.org/10.1038/80833
pmid: 11062499
69
Zhou J, Zhang X, Liu S, Wang Z, Chen Q, Wu Y, He Z, Huang Z. Genetic association of TLR4 Asp299Gly, TLR4 Thr399Ile, and CD14 C-159T polymorphisms with the risk of severe RSV infection: a meta-analysis. Influenza and Other Respiratory Viruses, 2016, 10(3): 224–233 https://doi.org/10.1111/irv.12378
pmid: 26901241
Scapini P, Lapinet-Vera J A, Gasperini S, Calzetti F, Bazzoni F, Cassatella M A. The neutrophil as a cellular source of chemokines. Immunological Reviews, 2000, 177(1): 195–203 https://doi.org/10.1034/j.1600-065X.2000.17706.x
pmid: 11138776