Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

邮发代号 80-906

Frontiers of Agricultural Science and Engineering  2019, Vol. 6 Issue (1): 3-7   https://doi.org/10.15302/J-FASE-2018247
  本期目录
The past, present and future of bovine pluripotent stem cells: a brief overview
Xiuchun TIAN()
Department of Animal Science, University of Connecticut/UCONN Stem Cell Institute, Storrs, CT 06268-4163, USA
 全文: PDF(139 KB)   HTML
Abstract

Although the pursuit of bovine embryonic stem cells started more than 26 years ago for the purpose of gene-targeting, true pluripotent stem cells in this economically important species are still elusive. With the rapid advances in genome-editing and cloning using homologously recombined somatic cells, the need for pluripotent stem cells for precise genetic modification in any species became questionable. With the pig being the better model for human regenerative biology, the identification of the commonalities and uniqueness of the pluripotency circuitry across mammalian species may be the main objective for studying pluripotent stem cells in the bovine.

Key wordsbovine    embryonic    induced    pluripotent stem cells
收稿日期: 2018-09-30      出版日期: 2019-02-25
Corresponding Author(s): Xiuchun TIAN   
 引用本文:   
. [J]. Frontiers of Agricultural Science and Engineering, 2019, 6(1): 3-7.
Xiuchun TIAN. The past, present and future of bovine pluripotent stem cells: a brief overview. Front. Agr. Sci. Eng. , 2019, 6(1): 3-7.
 链接本文:  
https://academic.hep.com.cn/fase/CN/10.15302/J-FASE-2018247
https://academic.hep.com.cn/fase/CN/Y2019/V6/I1/3
1 SSaito, N Strelchenko, HNiemann. Bovine embryonic stem cell-like cell lines cultured over several passages. Roux’s Archives of Developmental Biology, 1992, 201(3): 134–141
https://doi.org/10.1007/BF00188711 pmid: 28305579
2 PLi, C Tong, RMehrian-Shai, LJia, N Wu, YYan, R EMaxson, E NSchulze, HSong, C L Hsieh, M F Pera, Q L Ying. Germline competent embryonic stem cells derived from rat blastocysts. Cell, 2008, 135(7): 1299–1310
https://doi.org/10.1016/j.cell.2008.12.006 pmid: 19109898
3 F DWest, E W Uhl, Y Liu, HStowe, YLu, P Yu, AGallegos-Cardenas, S LPratt, S LStice. Brief report: chimeric pigs produced from induced pluripotent stem cells demonstrate germline transmission and no evidence of tumor formation in young pigs. Stem Cells, 2011, 29(10): 1640–1643
https://doi.org/10.1002/stem.713 pmid: 22039609
4 ABradley, M Evans, M HKaufman, ERobertson. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature, 1984, 309(5965): 255–256
https://doi.org/10.1038/309255a0 pmid: 6717601
5 J AThomson, J Itskovitz-Eldor, S SShapiro, M AWaknitz, J JSwiergiel, V SMarshall, J MJones. Embryonic stem cell lines derived from human blastocysts. Science, 1998, 282(5391): 1145–1147
https://doi.org/10.1126/science.282.5391.1145 pmid: 9804556
6 JNichols, A Smith. Naive and primed pluripotent states. Cell Stem Cell, 2009, 4(6): 487–492
7 I GBrons, L E Smithers, M W Trotter, P Rugg-Gunn, BSun, S MChuva de Sousa Lopes, S KHowlett, AClarkson, LAhrlund-Richter, R APedersen, LVallier. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature, 2007, 448(7150): 191–195
https://doi.org/10.1038/nature05950 pmid: 17597762
8 P JTesar, J G Chenoweth, F A Brook, T J Davies, E P Evans, D L Mack, R L Gardner, R D McKay. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature, 2007, 448(7150): 196–199
https://doi.org/10.1038/nature05972 pmid: 17597760
9 DJames, A J Levine, D Besser, AHemmati-Brivanlou. TGFβ/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development, 2005, 132(6): 1273–1282
https://doi.org/10.1242/dev.01706 pmid: 15703277
10 KTakahashi, S Yamanaka. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4): 663–676
https://doi.org/10.1016/j.cell.2006.07.024 pmid: 16904174
11 JYu, M A Vodyanik, K Smuga-Otto, JAntosiewicz-Bourget, J LFrane, STian, J Nie, G AJonsdottir, VRuotti, RStewart, I ISlukvin, J AThomson. Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007, 318(5858): 1917–1920
https://doi.org/10.1126/science.1151526 pmid: 18029452
12 CBuecker, H H Chen, J M Polo, L Daheron, LBu, T SBarakat, POkwieka, APorter, JGribnau, KHochedlinger, NGeijsen. A murine ESC-like state facilitates transgenesis and homologous recombination in human pluripotent stem cells. Cell Stem Cell, 2010, 6(6): 535–546
https://doi.org/10.1016/j.stem.2010.05.003 pmid: 20569691
13 JHanna, A W Cheng, K Saha, JKim, C JLengner, FSoldner, J PCassady, JMuffat, B WCarey, RJaenisch. Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(20): 9222–9227
https://doi.org/10.1073/pnas.1004584107 pmid: 20442331
14 OGafni, L Weinberger, A AMansour, Y SManor, EChomsky, DBen-Yosef, YKalma, SViukov, IMaza, A Zviran, YRais, ZShipony, ZMukamel, VKrupalnik, MZerbib, SGeula, ICaspi, DSchneir, TShwartz, SGilad, DAmann-Zalcenstein, SBenjamin, IAmit, A Tanay, RMassarwa, NNovershtern, J HHanna. Derivation of novel human ground state naive pluripotent stem cells. Nature, 2013, 504(7479): 282–286
https://doi.org/10.1038/nature12745 pmid: 24172903
15 JWu, A Platero-Luengo, MSakurai, ASugawara, M AGil, TYamauchi, KSuzuki, Y SBogliotti, CCuello, MMorales Valencia, DOkumura, JLuo, M Vilariño, IParrilla, D ASoto, C AMartinez, THishida, SSánchez-Bautista, M LMartinez-Martinez, HWang, A Nohalez, EAizawa, PMartinez-Redondo, AOcampo, PReddy, JRoca, E A Maga, C R Esteban, W T Berggren, E Nuñez Delicado, JLajara, IGuillen, PGuillen, J MCampistol, E AMartinez, P JRoss, J CIzpisua Belmonte. Interspecies chimerism with mammalian pluripotent stem cells. Cell, 2017, 168(3): 473–486
https://doi.org/10.1016/j.cell.2016.12.036 pmid: 28129541
16 YYang, B Liu, JXu, JWang, J Wu, CShi, YXu, J Dong, CWang, WLai, J Zhu, LXiong, DZhu, X Li, WYang, TYamauchi, ASugawara, ZLi, F Sun, XLi, CLi, A He, YDu, TWang, C Zhao, HLi, XChi, H Zhang, YLiu, CLi, S Duo, MYin, HShen, J C I Belmonte, H Deng. Derivation of pluripotent stem cells with invivo embryonic and extraembryonic potency. Cell, 2017, 169(2): 243–257
https://doi.org/10.1016/j.cell.2017.02.005 pmid: 28388409
17 XWu, M Song, XYang, XLiu, K Liu, CJiao, JWang, C Bai, GSu, XLiu, G Li. Establishment of bovine embryonic stem cells after knockdown of CDX2. Scientific Reports, 2016, 6(1): 28343
https://doi.org/10.1038/srep28343 pmid: 27320776
18 J BCibelli, S L Stice, P J Golueke, J J Kane, J Jerry, CBlackwell, F A Pde León, J MRobl. Transgenic bovine chimeric offspring produced from somatic cell-derived stem-like cells. Nature Biotechnology, 1998, 16(7): 642–646
https://doi.org/10.1038/nbt0798-642 pmid: 9661197
19 Y SBogliotti, JWu, M Vilarino, DOkamura, D ASoto, CZhong, MSakurai, R VSampaio, KSuzuki, J CIzpisua Belmonte, P JRoss. Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(9): 2090–2095
https://doi.org/10.1073/pnas.1716161115 pmid: 29440377
20 HSumer, J Liu, L FMalaver-Ortega, M LLim, KKhodadadi, P JVerma. NANOG is a key factor for induction of pluripotency in bovine adult fibroblasts. Journal of Animal Science, 2011, 89(9): 2708–2716
https://doi.org/10.2527/jas.2010-3666 pmid: 21478453
21 XHan, J Han, FDing, SCao, S S Lim, Y Dai, RZhang, YZhang, BLim, N Li. Generation of induced pluripotent stem cells from bovine embryonic fibroblast cells. Cell Research, 2011, 21(10): 1509–1512
https://doi.org/10.1038/cr.2011.125 pmid: 21826109
22 HCao, P Yang, YPu, XSun, H Yin, YZhang, YZhang, YLi, Y Liu, FFang, ZZhang, YTao, X Zhang. Characterization of bovine induced pluripotent stem cells by lentiviral transduction of reprogramming factor fusion proteins. International Journal of Biological Sciences, 2012, 8(4): 498–511
https://doi.org/10.7150/ijbs.3723 pmid: 22457605
23 T RTalluri, D Kumar, SGlage, WGarrels, ZIvics, KDebowski, RBehr, H Niemann, W AKues. Derivation and characterization of bovine induced pluripotent stem cells by transposon-mediated reprogramming. Cellular Reprogramming, 2015, 17(2): 131–140
https://doi.org/10.1089/cell.2014.0080 pmid: 25826726
24 L FMalaver-Ortega, HSumer, JLiu, P J Verma. Inhibition of JAK-STAT ERK/MAPK and glycogen synthase kinase-3 induces a change in gene expression profile of bovine induced pluripotent stem cells. Stem Cells International, 2016, 2016: 5127984
https://doi.org/10.1155/2016/5127984 pmid: 26880968
25 S WWang, S S Wang, D C Wu, Y C Lin, C C Ku, C C Wu, C Y Chai, J N Lee, E M Tsai, C L Lin, R C Yang, Y C Ko, H S Yu, C Huo, C PChuu, YMurayama, YNakamura, SHashimoto, KMatsushima, CJin, R Eckner, C SLin, SSaito, K KYokoyama. Androgen receptor-mediated apoptosis in bovine testicular induced pluripotent stem cells in response to phthalate esters. Cell Death & Disease, 2013, 4(11): e907
https://doi.org/10.1038/cddis.2013.420 pmid: 24201806
26 Y CLin, K K Kuo, K Wuputra, S HLin, C CKu, Y HYang, S WWang, S WWang, D CWu, C CWu, C YChai, C LLin, C SLin, MKajitani, HMiyoshi, YNakamura, SHashimoto, KMatsushima, CJin, S K Huang, S Saito, K KYokoyama. Bovine induced pluripotent stem cells are more resistant to apoptosis than testicular cells in response to mono-(2-ethylhexyl) phthalate. International Journal of Molecular Sciences, 2014, 15(3): 5011–5031
https://doi.org/10.3390/ijms15035011 pmid: 24658443
27 Y THeo, X Quan, Y NXu, SBaek, H Choi, N HKim, JKim. CRISPR/Cas9 nuclease-mediated gene knock-in in bovine-induced pluripotent cells. Stem Cells and Development, 2015, 24(3): 393–402
https://doi.org/10.1089/scd.2014.0278 pmid: 25209165
28 TKawaguchi, T Tsukiyama, KKimura, SMatsuyama, NMinami, MYamada, HImai. Generation of naïve bovine induced pluripotent stem cells using piggyBac transposition of doxycycline-inducible transcription factors. PLoS One, 2015, 10(8): e0135403
https://doi.org/10.1371/journal.pone.0135403 pmid: 26287611
29 TKawaguchi, D Cho, MHayashi, TTsukiyama, KKimura, SMatsuyama, NMinami, MYamada, HImai. Derivation of induced trophoblast cell lines in cattle by doxycycline-inducible piggyBac vectors. PLoS One, 2016, 11(12): e0167550
https://doi.org/10.1371/journal.pone.0167550 pmid: 27907214
30 N CTalbot, W O Sparks, C E Phillips, A D Ealy, A M Powell, T J Caperna, W M Garrett, D M Donovan, L A Blomberg. Bovine trophectoderm cells induced from bovine fibroblasts with induced pluripotent stem cell reprogramming factors. Molecular Reproduction and Development, 2017, 84(6): 468–485
https://doi.org/10.1002/mrd.22797 pmid: 28332752
31 TEzashi, H Matsuyama, B PTelugu, R MRoberts. Generation of colonies of induced trophoblast cells during standard reprogramming of porcine fibroblasts to induced pluripotent stem cells. Biology of Reproduction, 2011, 85(4): 779–787
https://doi.org/10.1095/biolreprod.111.092809 pmid: 21734265
32 T JWilliams, R K Munro, J N Shelton. Production of interspecies chimeric calves by aggregation of Bos indicus and Bos taurus demi-embryos. Reproduction, Fertility, and Development, 1990, 2(4): 385–394
https://doi.org/10.1071/RD9900385 pmid: 2217895
33 ABoediono, T Suzuki, L YLi, R AGodke. Offspring born from chimeras reconstructed from parthenogenetic and in vitro fertilized bovine embryos. Molecular Reproduction and Development, 1999, 53(2): 159–170
https://doi.org/10.1002/(SICI)1098-2795(199906)53:2<159::AID-MRD5>3.0.CO;2-X pmid: 10331454
34 M IHiriart, R J Bevacqua, N G Canel, R Fernández-Martín, D FSalamone. Production of chimeric embryos by aggregation of bovine egfp eight-cell stage blastomeres with two-cell fused and asynchronic embryos. Theriogenology, 2013, 80(4): 357–364
https://doi.org/10.1016/j.theriogenology.2013.04.023 pmid: 23735715
35 KSimmet, M Reichenbach, H DReichenbach, EWolf. Phytohemagglutinin facilitates the aggregation of blastomere pairs from Day 5 donor embryos with Day 4 host embryos for chimeric bovine embryo multiplication. Theriogenology, 2015, 84(9): 1603–1610
https://doi.org/10.1016/j.theriogenology.2015.08.012 pmid: 26409823
36 E MRazza, R A Satrapa, I P Emanuelli, C M Barros, M F Nogueira. Screening of biotechnical parameters for production of bovine inter-subspecies embryonic chimeras by the aggregation of tetraploid Bos indicus and diploid crossbred Bos taurus embryos. Reproductive Biology, 2016, 16(1): 34–40
https://doi.org/10.1016/j.repbio.2015.11.003 pmid: 26952751
37 SSaito, K Sawai, HUgai, SMoriyasu, AMinamihashi, YYamamoto, HHirayama, SKageyama, JPan, T Murata, YKobayashi, YObata, K KYokoyama. Generation of cloned calves and transgenic chimeric embryos from bovine embryonic stem-like cells. Biochemical and Biophysical Research Communications, 2003, 309(1): 104–113
https://doi.org/10.1016/S0006-291X(03)01536-5 pmid: 12943670
38 SIwasaki, K H Campbell, C Galli, KAkiyama, SIwasaki. Production of live calves derived from embryonic stem-like cells aggregated with tetraploid embryos. Biology of Reproduction, 2000, 62(2): 470–475
https://doi.org/10.1095/biolreprod62.2.470 pmid: 10642589
39 TFurusawa, K Ohkoshi, KKimura, SMatsuyama, SAkagi, MKaneda, MIkeda, MHosoe, KKizaki, TTokunaga. Characteristics of bovine inner cell mass-derived cell lines and their fate in chimeric conceptuses. Biology of Reproduction, 2013, 89(2): 28
https://doi.org/10.1095/biolreprod.112.106641 pmid: 23782837
40 MCasal, M Haskins. Large animal models and gene therapy. European Journal of Human Genetics, 2006, 14(3): 266–272
https://doi.org/10.1038/sj.ejhg.5201535 pmid: 16333317
41 P AHarper, P J Healy, J A Dennis. Animal model of human disease. Citrullinemia (argininosuccinate synthetase deficiency). American Journal of Pathology, 1989, 135(6): 1213–1215
pmid: 2596577
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed