RESEARCH PROGRESS ON THE IMPACT OF NITROGEN DEPOSITION ON GLOBAL GRASSLANDS
Carly J. STEVENS1(), Sofia BASTO2, Michael D. BELL3, Tianxiang HAO4,5, Kevin KIRKMAN6, Raul OCHOA-HUESO7
1. Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK 2. Unit of Ecology and systematics, Department of Biology, Faculty of Science, Pontificia University Javeriana, Carrera 3. No. 43-82 Ed. Jesús Emilio Ramírez (53), Bogotá, Colombia 4. National Park Service, Air Resources Division, Lakewood, CO 80235, USA 5. Synthesis Research Center of Chinese Ecosystem Research Network, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China 6. College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of Ministry of Education, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, China Agricultural University, Beijing 100193, China 7. School of Life Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa 8. Departament of Biology -IVAGRO, Universidad de Cádiz, Campus Río San Pedro, 11510 Puerto Real, Spain
● Grasslands in many regions of the world have been impacted by atmospheric nitrogen deposition.
● Nitrogen deposition commonly leads to reductions in species richness.
● Increases in biomass production is a common response to increased N deposition.
● In some parts of the world there has been limited research into the impacts of nitrogen deposition.
Grasslands are globally-important ecosystems providing critical ecosystem services. The species composition and characteristics of grasslands vary considerably across the planet with a wide variety of different grasslands found. However, in many regions grasslands have been impacted by atmospheric nitrogen deposition originating from anthropogenic activities with effects on productivity, species composition and diversity widely reported. Impacts vary across grassland habitats but many show declines in species richness and increases in biomass production related to soil eutrophication and acidification. At a continental level there is considerable variation in the research effort that has been put into understanding the impacts of nitrogen deposition. In Europe, North America and parts of Asia, although there are unanswered research questions, there is a good understanding of N deposition impacts in most grassland habitats. This is not the case in other regions with large knowledge gaps in some parts of the world. This paper reviews the impacts of N deposition on grasslands around the world, highlighting recent advances and areas where research is still needed.
. [J]. Frontiers of Agricultural Science and Engineering, 2022, 9(3): 425-444.
Carly J. STEVENS, Sofia BASTO, Michael D. BELL, Tianxiang HAO, Kevin KIRKMAN, Raul OCHOA-HUESO. RESEARCH PROGRESS ON THE IMPACT OF NITROGEN DEPOSITION ON GLOBAL GRASSLANDS. Front. Agr. Sci. Eng. , 2022, 9(3): 425-444.
• Changes in the ratio of reduced and oxidized N inputs • Recovery from N deposition
North America
• Changes in the ratio of reduced and oxidized N inputs • Individual species responses
South America
• Improved understanding of impacts of N on major grassland types • Understanding the role of N fixers and other plant soil interactions • Critical loads for major grassland types
Asia
• Recovery from N deposition • Experiments with low N inputs and high frequency additions to refine predictions of community response
Africa
• Improved understanding of impacts of N on major grassland types
Australia
• Improved understanding of impacts of N on major grassland types • Interactions between N deposition and water availability and other nutrients
Tab.1
1
S G Reynolds. Introduction. In: Suttie J M, Reynolds S G, Batello C, eds. Grasslands of the World. Rome: Food and Agriculture Organization of the United Nations (FAO) , 2005
R T Conant. Challenges and opportunities for carbon sequestration in grassland systems: a technical report on grassland management and climate change mitigation. Rome: Food and Agriculture Organization of the United Nations (FAO) , 2010
4
D, Ackerman D B, Millet X Chen. Global estimates of inorganic nitrogen deposition across four decades. Global Biogeochemical Cycles , 2019, 33( 1): 100–107 https://doi.org/10.1029/2018GB005990
5
T R, Loveland B C, Reed J F, Brown D O, Ohlen Z, Zhu L, Yang J W Merchant. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. International Journal of Remote Sensing , 2000, 21( 6–7): 1303–1330 https://doi.org/10.1080/014311600210191
6
C M, Clark S E, Hobbie R, Venterea D Tilman. Long-lasting effects on nitrogen cycling 12 years after treatments cease despite minimal long-term nitrogen retention. Global Change Biology , 2009, 15( 7): 1755–1766 https://doi.org/10.1111/j.1365-2486.2008.01811.x
S L, Hou S, Hättenschwiler J J, Yang S, Sistla H W, Wei Z W, Zhang Y Y, Hu R Z, Wang S Y, Cui X T, Lü X G Han. Increasing rates of long-term nitrogen deposition consistently increased litter decomposition in a semi-arid grassland. New Phytologist , 2021, 229( 1): 296–307 https://doi.org/10.1111/nph.16854
pmid: 32762047
9
C E R, Pitcairn I D, Leith L J, Sheppard M A, Sutton D, Fowler R C, Munro S, Tang D Wilson. The relationship between nitrogen deposition, species composition and foliar nitrogen concentrations in woodland flora in the vicinity of livestock farms. Environmental Pollution , 1998, 102(Supplement 1): 41−48
10
C J, Stevens C, Duprè E, Dorland C, Gaudnik D J G, Gowing A, Bleeker M, Diekmann D, Alard R, Bobbink D, Fowler E, Corcket J O, Mountford V, Vandvik P A, Aarrestad S, Muller N B Dise. Nitrogen deposition threatens species richness of grasslands across Europe. Environmental Pollution , 2010, 158( 9): 2940–2945 https://doi.org/10.1016/j.envpol.2010.06.006
pmid: 20598409
11
C J, Stevens E M, Lind Y, Hautier W S, Harpole E T, Borer S, Hobbie E W, Seabloom L, Ladwig J D, Bakker C, Chu S, Collins K F, Davies J, Firn H, Hillebrand K J L, Pierre A, MacDougall B, Melbourne R L, McCulley J, Morgan J L, Orrock S M, Prober A C, Risch M, Schuetz P D Wragg. Anthropogenic nitrogen deposition predicts local grassland primary production worldwide. Ecology , 2015, 96( 6): 1459–1465 https://doi.org/10.1890/14-1902.1
12
Y, Hautier P A, Niklaus A Hector. Competition for light causes plant biodiversity loss after eutrophication. Science , 2009, 324( 5927): 636–638 https://doi.org/10.1126/science.1169640
pmid: 19407202
13
E T, Borer W S, Harpole P B, Adler E M, Lind J L, Orrock E W, Seabloom M D Smith. Finding generality in ecology: a model for globally distributed experiments. Methods in Ecology and Evolution , 2014, 5( 1): 65–73 https://doi.org/10.1111/2041-210X.12125
14
B, Schuster M Diekmann. Changes in species density along the soil pH gradient—Evidence from German plant communities. Folia Geobotanica , 2003, 38( 4): 367–379 https://doi.org/10.1007/BF02803245
15
M Andersson. Toxicity and tolerance of aluminium in vascular plants. Water, Air, and Soil Pollution , 1988, 39( 3–4): 439–462 https://doi.org/10.1007/BF00279487
16
D T, Britto H J Kronzucker. NH4+ toxicity in higher plants: a critical review. Journal of Plant Physiology , 2002, 159( 6): 567–584 https://doi.org/10.1078/0176-1617-0774
S J M, Caporn T W, Ashenden J A Lee. The effect of exposure to NO2 and SO2 on frost hardiness in Calluna vulgaris . Environmental and Experimental Botany , 2000, 43(2): 111−119
19
A M H, Brunsting G W Heil. The role of nutrients in the interactions between a herbivorous beetle and some competing plant species in heathlands. Oikos , 1985, 44( 1): 23–26 https://doi.org/10.2307/3544038
20
C D, Field N B, Dise R J, Payne A J, Britton B A, Emmett R C, Helliwell S, Hughes L, Jones S, Lees J R, Leake I D, Leith G K, Phoenix S A, Power L J, Sheppard G E, Southon C J, Stevens S J M Caporn. Nitrogen drives plant community change across semi-natural habitats. Ecosystems , 2014, 17 : 864–877 https://doi.org/10.1007/s10021-014-9765-5
21
S M, Simkin E B, Allen W D, Bowman C M, Clark J, Belnap M L, Brooks B S, Cade S L, Collins L H, Geiser F S, Gilliam S E, Jovan L H, Pardo B K, Schulz C J, Stevens K N, Suding H L, Throop D M Waller. Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States. Proceedings of the National Academy of Sciences of the United States of America , 2016, 113( 15): 4086–4091 https://doi.org/10.1073/pnas.1515241113
pmid: 27035943
22
J Nilsson. Critical Loads for sulphur and nitrogen. In: Mathy P, ed. Air Pollution and Ecosystems. Dordrecht: Springer , 1988, 85–91
23
J, Dengler I, Biurrun S, Boch I, Dembicz P Török. Grasslands of the Palaearctic biogeographic realm: introduction and synthesis. In: Goldstein M, Dellasala D, eds. Encyclopedia of the World’s Biomes. Elsevier , 2020, 617–637
24
C J, Stevens N B, Dise J O, Mountford D J Gowing. Impact of nitrogen deposition on the species richness of grasslands. Science , 2004, 303( 5665): 1876–1879 https://doi.org/10.1126/science.1094678
pmid: 15031507
25
C, Damgaard L, Jensen L M, Frohn F, Borchsenius K E, Nielsen R, Ejrnæs C J Stevens. The effect of nitrogen deposition on the species richness of acid grasslands in Denmark: a comparison with a study performed on a European scale. Environmental Pollution , 2011, 159( 7): 1778–1782 https://doi.org/10.1016/j.envpol.2011.04.003
pmid: 21530033
26
K, Wilkins J, Aherne A Bleasdale. Vegetation community change points suggest that critical loads of nutrient nitrogen may be too high. Atmospheric Environment , 2016, 146 : 324–331 https://doi.org/10.1016/j.atmosenv.2016.07.016
27
C J, Stevens N B, Dise D J, Gowing J O Mountford. Loss of forb diversity in relation to nitrogen deposition in the UK: regional trends and potential controls. Global Change Biology , 2006, 12( 10): 1823–1833 https://doi.org/10.1111/j.1365-2486.2006.01217.x
28
Den Berg L J L, Van L, Jones L J, Sheppard S M, Smart R, Bobbink N B, Dise M R Ashmore. Evidence for differential effects of reduced and oxidised nitrogen deposition on vegetation independent of nitrogen load. Environmental Pollution , 2016, 208(Part B): 890–897
29
C J, Stevens K, Thompson J P, Grime C J, Long D J G Gowing. Contribution of acidification and eutrophication to declines in species richness of calcifuge grasslands along a gradient of atmospheric nitrogen deposition. Functional Ecology , 2010, 24( 2): 478–484 https://doi.org/10.1111/j.1365-2435.2009.01663.x
30
T, Roth L, Kohli B, Rihm R, Meier B Achermann. Using change-point models to estimate empirical critical loads for nitrogen in mountain ecosystems. Environmental Pollution , 2017, 220(Part B): 1480–1487
31
S, Boch Y, Kurtogullari E, Allan M, Lessard-Therrien N S, Rieder M, Fischer De León G, Martínez R, Arlettaz J Y Humbert. Effects of fertilization and irrigation on vascular plant species richness, functional composition and yield in mountain grasslands. Journal of Environmental Management , 2021, 279 : 111629 https://doi.org/10.1016/j.jenvman.2020.111629
pmid: 33187787
32
J, Silvertown P, Poulton E, Johnston G, Edwards M, Heard P M Biss. The Park Grass Experiment 1856–2006: its contribution to ecology. Journal of Ecology , 2006, 94( 4): 801–814 https://doi.org/10.1111/j.1365-2745.2006.01145.x
33
K W T, Goulding N J, Bailey N J, Bradbury P, Hargreaves M, Howe D V, Murphy P R, Poulton T W Willison. Nitrogen deposition and its contribution to nitrogen cycling and associated soil processes. New Phytologist , 1998, 139( 1): 49–58 https://doi.org/10.1046/j.1469-8137.1998.00182.x
34
J, Storkey A J, Macdonald P R, Poulton T, Scott I H, Köhler H, Schnyder K W T, Goulding M J Crawley. Grassland biodiversity bounces back from long-term nitrogen addition. Nature , 2015, 528( 7582): 401–404 https://doi.org/10.1038/nature16444
pmid: 26633635
35
L C, Maskell S M, Smart J M, Bullock K, Thompson C J Stevens. Nitrogen deposition causes widespread species loss in British Habitats. Global Change Biology , 2010, 16( 2): 671–679 https://doi.org/10.1111/j.1365-2486.2009.02022.x
36
E, Tipping P A, Henrys L C, Maskell S M Smart. Nitrogen deposition effects on plant species diversity; threshold loads from field data. Environmental Pollution , 2013, 179 : 218–223 https://doi.org/10.1016/j.envpol.2013.04.008
pmid: 23688734
37
Den Berg L J L, Van P, Vergeer T C G, Rich S M, Smart D, Guest M R Ashmore. Direct and indirect effects of nitrogen deposition on species composition change in calcareous grasslands. Global Change Biology , 2011, 17( 5): 1871–1883 https://doi.org/10.1111/j.1365-2486.2010.02345.x
38
M, Diekmann U, Jandt D, Alard A, Bleeker E, Corcket D J G, Gowing C J, Stevens C Duprè. Long-term changes in calcareous grassland vegetation in North-western Germany—No decline in species richness, but a shift in species composition. Biological Conservation , 2014, 172 : 170–179 https://doi.org/10.1016/j.biocon.2014.02.038
39
R, Bobbink J H Willems. Increasing dominance of Brachypodium pinnatum (L.) Beauv. in chalk grasslands: a threat to a species-rich ecosystem. Biological Conservation , 1987, 40( 4): 301–314 https://doi.org/10.1016/0006-3207(87)90122-4
40
T, Ceulemans Geel M, Van H, Jacquemyn M, Boeraeve J, Plue L, Saar L, Kasari G, Peeters Acker K, Van S, Crauwels B, Lievens O Honnay. Arbuscular mycorrhizal fungi in European grasslands under nutrient pollution. Global Ecology and Biogeography , 2019, 28( 12): 1796–1805 https://doi.org/10.1111/geb.12994
41
G, Bonanomi S, Caporaso M Allegrezza. Effects of nitrogen enrichment, plant litter removal and cutting on a species-rich Mediterranean calcareous grassland. Plant Biosystems , 2009, 143( 3): 443–455 https://doi.org/10.1080/11263500903172128
42
R K F, Nair K A, Morris M, Hertel Y, Luo G, Moreno M, Reichstein M, Schrumpf M N Migliavacca. P stoichiometry and habitat effects on Mediterranean savanna seasonal root dynamics. Biogeosciences , 2019, 16( 9): 1883–1901 https://doi.org/10.5194/bg-16-1883-2019
43
Y, Luo T, El-Madany X, Ma R, Nair M, Jung U, Weber G, Filippa S F, Bucher G, Moreno E, Cremonese A, Carrara R, Gonzalez-Cascon Escudero Y, Cáceres M, Galvagno J, Pacheco-Labrador M P, Martín O, Perez-Priego M, Reichstein A D, Richardson A, Menzel C, Römermann M Migliavacca. Nutrients and water availability constrain the seasonality of vegetation activity in a Mediterranean ecosystem. Global Change Biology , 2020, 26( 8): 4379–4400 https://doi.org/10.1111/gcb.15138
pmid: 32348631
44
R, Ochoa-Hueso M, Delgado-Baquerizo A, Gallardo M A, Bowker F T Maestre. Climatic conditions, soil fertility and atmospheric nitrogen deposition largely determine the structure and functioning of microbial communities in biocrust-dominated Mediterranean drylands. Plant and Soil , 2016, 399( 1–2): 271–282 https://doi.org/10.1007/s11104-015-2695-y
45
R, Ochoa-Hueso F T, Maestre Los Ríos A, de S, Valea M R, Theobald M G, Vivanco E, Manrique M A Bowker. Nitrogen deposition alters nitrogen cycling and reduces soil carbon content in low-productivity semiarid Mediterranean ecosystems. Environmental Pollution , 2013, 179 : 185–193 https://doi.org/10.1016/j.envpol.2013.03.060
pmid: 23685631
46
C, Körner M, Diemer B, Schäppi P, Niklaus J III Arnone. The responses of alpine grassland to four seasons of CO2 enrichment: a synthesis. Acta Oecologica , 1997, 18( 3): 165–175 https://doi.org/10.1016/S1146-609X(97)80002-1
47
L B, Sparrius A M, Kooijman J Sevink. Response of inland dune vegetation to increased nitrogen and phosphorus levels. Applied Vegetation Science , 2013, 16( 1): 40–50 https://doi.org/10.1111/j.1654-109X.2012.01206.x
48
W A V, Stiles E C, Rowe P Dennis. Long-term nitrogen and phosphorus enrichment alters vegetation species composition and reduces carbon storage in upland soil. Science of the Total Environment , 2017, 593–594: 688–694
49
R, Bobbink J P Hettelingh. Review and revision of empirical critical loads and dose-response relationships: proceedings of an expert workshop, Noordwijkerhout, 23–25 June 2010. Bilthoven: Coordination Centre for Effects, National Institute for Public Health and the Environment (RIVM) , 2011
50
D, Fowler M, O’donoghue J B A, Muller R, Smith U, Dragosits U, Skiba M A, Sutton P Brimblecombe. A chronology of nitrogen deposition in the UK between 1860 and 2000. Water Air and Soil Pollution Focus , 2004, 4( 6): 9–23 https://doi.org/10.1007/s11267-004-3009-1
51
C J, Stevens P, Manning den Berg L J L, van Graaf M C C, de G W W, Wamelink A W, Boxman A, Bleeker P, Vergeer M, Arroniz-Crespo J, Limpens L P M, Lamers R, Bobbink E Dorland. Ecosystem responses to differing ratios of reduced and oxidised nitrogen inputs. Environmental Pollution , 2011, 159 : 665–676 https://doi.org/10.1016/j.envpol.2010.12.008
pmid: 21215502
52
M A, Sutton C M, Howard J W, Erisman G, Billen A, Bleeker P, Grennfelt Grinsven H, Van B Grizzetti. The European Nitrogen Assessment: Sources, Effects and Policy Perspectives. Cambridge: Cambridge University Press , 2011
53
C J Stevens. How long do ecosystems take to recover from atmospheric nitrogen deposition. Biological Conservation , 2016, 200 : 160–167 https://doi.org/10.1016/j.biocon.2016.06.005
54
L H, Pardo M E, Fenn C L, Goodale L H, Geiser C T, Driscoll E B, Allen J S, Baron R, Bobbink W D, Bowman C M, Clark B, Emmett F S, Gilliam T L, Greaver S J, Hall E A, Lilleskov L, Liu J A, Lynch K J, Nadelhoffer S S, Perakis M J, Robin-Abbott J L, Stoddard K C, Weathers R L Dennis. Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States. Ecological Applications , 2011, 21( 8): 3049–3082 https://doi.org/10.1890/10-2341.1
55
J M, Omernik G E Griffith. Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework. Environmental Management , 2014, 54( 6): 1249–1266 https://doi.org/10.1007/s00267-014-0364-1
pmid: 25223620
56
W D, Bowman J, Murgel T, Blett E Porter. Nitrogen critical loads for alpine vegetation and soils in Rocky Mountain National Park. Journal of Environmental Management , 2012, 103 : 165–171 https://doi.org/10.1016/j.jenvman.2012.03.002
pmid: 22516810
57
W D, Bowman A, Ayyad de Mesquita C P, Bueno N, Fierer T S, Potter S Sternagel. Limited ecosystem recovery from simulated chronic nitrogen deposition. Ecological Applications , 2018, 28( 7): 1762–1772 https://doi.org/10.1002/eap.1783
pmid: 30179279
58
T C, McDonnell S, Belyazid T J, Sullivan H, Sverdrup W D, Bowman E M Porter. Modeled subalpine plant community response to climate change and atmospheric nitrogen deposition in Rocky Mountain National Park, USA. Environmental Pollution , 2014, 187 : 55–64 https://doi.org/10.1016/j.envpol.2013.12.021
pmid: 24448482
59
R, Bobbink K, Hicks J, Galloway T, Spranger R, Alkemade M, Ashmore M, Bustamante S, Cinderby E, Davidson F, Dentener B, Emmett J W, Erisman M, Fenn F, Gilliam A, Nordin L, Pardo Vries W De. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications , 2010, 20( 1): 30–59 https://doi.org/10.1890/08-1140.1
pmid: 20349829
60
C E, Kazanski J, Cowles S, Dymond A T, Clark A S, David J M, Jungers A E, Kendig C E, Riggs J, Trost X Wei. Water availability modifies productivity response to biodiversity and nitrogen in long-term grassland experiments. Ecological Applications , 2021, 31( 6): e02363 https://doi.org/10.1002/eap.2363
pmid: 33899307
61
M L, Phillips D E, Winkler R H, Reibold B B, Osborne S C Reed. Muted responses to chronic experimental nitrogen deposition on the Colorado Plateau. Oecologia , 2021, 195( 2): 513–524 https://doi.org/10.1007/s00442-020-04841-3
pmid: 33415421
62
J, Belnap J M, Stark B M, Rau E B, Allen S Phillips. Soil moisture and biogeochemical factors influence the distribution of annual Bromus species. In: Germino M J, Chambers J C, Brown C S, eds. Exotic Brome-Grasses in Arid and Semiarid Ecosystems of the Western US: Causes, Consequences, and Management Implications. Springer , 2016, 227–256
63
L M, Ladwig S L, Collins A L, Swann Y, Xia M F, Allen E B Allen. Above- and belowground responses to nitrogen addition in a Chihuahuan Desert grassland. Oecologia , 2012, 169( 1): 177–185 https://doi.org/10.1007/s00442-011-2173-z
pmid: 22042525
64
S L, Collins L M, Ladwig M D, Petrie S K, Jones J M, Mulhouse J R, Thibault W T Pockman. Press-pulse interactions: effects of warming, N deposition, altered winter precipitation, and fire on desert grassland community structure and dynamics. Global Change Biology , 2017, 23( 3): 1095–1108 https://doi.org/10.1111/gcb.13493
pmid: 27612326
65
K G, Lyons B G, Maldonado-Leal G Owen. Community and ecosystem effects of buffelgrass (Pennisetum ciliare) and nitrogen deposition in the Sonoran Desert. Invasive Plant Science and Management , 2013, 6( 1): 65–78 https://doi.org/10.1614/IPSM-D-11-00071.1
66
R A, Minnich R J Dezzani. Historical decline of coastal sage scrub in the Riverside-Perris Plain, California. Western Birds , 1998, 29 : 366–391
R D, Cox K L, Preston R F, Johnson R A, Minnich E B Allen. Influence of landscape-scale variables on vegetation conversion to exotic annual grassland in southern California, USA. Global Ecology and Conservation , 2014, 2 : 190–203 https://doi.org/10.1016/j.gecco.2014.09.008
69
E B, Allen L M, Egerton-Warburton B E, Hilbig J M Valliere. Interactions of arbuscular mycorrhizal fungi, critical loads of nitrogen deposition, and shifts from native to invasive species in a southern California shrubland. Botany , 2016, 94( 6): 425–433 https://doi.org/10.1139/cjb-2015-0266
70
J M, Valliere I C, Irvine L, Santiago E B Allen. High N, dry: experimental nitrogen deposition exacerbates native shrub loss and nonnative plant invasion during extreme drought. Global Change Biology , 2017, 23( 10): 4333–4345 https://doi.org/10.1111/gcb.13694
pmid: 28319292
71
E, Harvey A S Macdougall. Non-interacting impacts of fertilization and habitat area on plant diversity via contrasting assembly mechanisms. Diversity & Distributions , 2018, 24( 4): 509–520 https://doi.org/10.1111/ddi.12697
72
L, Biederman B, Mortensen P, Fay N, Hagenah J, Knops Pierre K, La R, Laungani E, Lind R, McCulley S, Power E, Seabloom P Tognetti. Nutrient addition shifts plant community composition towards earlier flowering species in some prairie ecoregions in the U.S. Central Plains. PLoS One , 2017, 12( 5): e0178440 https://doi.org/10.1371/journal.pone.0178440
pmid: 28552986
73
A J, Symstad A T, Smith W E, Newton A K Knapp. Experimentally derived nitrogen critical loads for northern Great Plains vegetation. Ecological Applications , 2019, 29( 5): e01915 https://doi.org/10.1002/eap.1915
pmid: 31056839
74
A G, Ponette-González M L, Green J, McCullars L Gough. Ambient urban N deposition drives increased biomass and total plant N in two native prairie grass species in the U.S. Southern Great Plains. PLoS One , 2021, 16( 5): e0251089 https://doi.org/10.1371/journal.pone.0251089
pmid: 33956866
75
R Q, Thomas C D, Canham K C, Weathers C L Goodale. Increased tree carbon storage in response to nitrogen deposition in the US. Nature Geoscience , 2010, 3( 1): 13–17 https://doi.org/10.1038/ngeo721
76
K J, Horn R Q, Thomas C M, Clark L H, Pardo M E, Fenn G B, Lawrence S S, Perakis E A H, Smithwick D, Baldwin S, Braun A, Nordin C H, Perry J N, Phelan P G, Schaberg Clair S B, St. R, Warby S Watmough. Growth and survival relationships of 71 tree species with nitrogen and sulfur deposition across the conterminous U.S. PLoS One , 2018, 13( 10): e0205296 https://doi.org/10.1371/journal.pone.0205296
pmid: 30335770
77
L H, Geiser H, Root R J, Smith S E, Jovan Clair L, St K L Dillman. Lichen-based critical loads for deposition of nitrogen and sulfur in US forests. Environmental Pollution , 2021, 291 : 118187 https://doi.org/10.1016/j.envpol.2021.118187
pmid: 34563846
78
C M, Clark S M, Simkin E B, Allen W D, Bowman J, Belnap M L, Brooks S L, Collins L H, Geiser F S, Gilliam S E, Jovan L H, Pardo B K, Schulz C J, Stevens K N, Suding H L, Throop D M Waller. Potential vulnerability of 348 herbaceous species to atmospheric deposition of nitrogen and sulfur in the United States. Nature Plants , 2019, 5( 7): 697–705 https://doi.org/10.1038/s41477-019-0442-8
pmid: 31263243
79
K, Wilkins C, Clark J Aherne. Ecological thresholds under atmospheric nitrogen deposition for 1200 herbaceous species and 24 communities across the United States. Global Change Biology , 2022, 28( 7): 2381–2395 https://doi.org/10.1111/gcb.16076
pmid: 34986509
80
C M, Clark M D, Bell J W, Boyd J A, Compton E A, Davidson C, Davis M E, Fenn L, Geiser L, Jones T F Blett. Nitrogen-induced terrestrial eutrophication: cascading effects and impacts on ecosystem services. Ecosphere , 2017, 8( 7): e01877 https://doi.org/10.1002/ecs2.1877
81
Y, Li B A, Schichtel J T, Walker D B, Schwede X, Chen C M B, Lehmann M A, Puchalski D A, Gay J L Jr Collett. Increasing importance of deposition of reduced nitrogen in the United States. Proceedings of the National Academy of Sciences of the United States of America , 2016, 113( 21): 5874–5879 https://doi.org/10.1073/pnas.1525736113
pmid: 27162336
82
U, Nopmongcol R, Beardsley N, Kumar E, Knipping G Yarwood. Changes in United States deposition of nitrogen and sulfur compounds over five decades from 1970 to 2020. Atmospheric Environment , 2019, 209 : 144–151 https://doi.org/10.1016/j.atmosenv.2019.04.018
83
W J, Bond N, Stevens G F, Midgley C E R Lehmann. The trouble with trees: afforestation plans for Africa. Trends in Ecology & Evolution , 2019, 34( 11): 963–965 https://doi.org/10.1016/j.tree.2019.08.003
pmid: 31515117
A N, Nerlekar J W Veldman. High plant diversity and slow assembly of old-growth grasslands. Proceedings of the National Academy of Sciences of the United States of America , 2020, 117( 31): 18550–18556 https://doi.org/10.1073/pnas.1922266117
pmid: 32675246
86
F A O, Silveira A J, Arruda W, Bond G, Durigan A, Fidelis K, Kirkman R S, Oliveira G E, Overbeck J B B, Sansevero F, Siebert S J, Siebert T P, Young E Buisson. Myth-busting tropical grassy biome restoration. Restoration Ecology , 2020, 28( 5): 1067–1073 https://doi.org/10.1111/rec.13202
87
M, Sankaran N P, Hanan R J, Scholes J, Ratnam D J, Augustine B S, Cade J, Gignoux S I, Higgins Roux X, Le F, Ludwig J, Ardo F, Banyikwa A, Bronn G, Bucini K K, Caylor M B, Coughenour A, Diouf W, Ekaya C J, Feral E C, February P G H, Frost P, Hiernaux H, Hrabar K L, Metzger H H T, Prins S, Ringrose W, Sea J, Tews J, Worden N Zambatis. Determinants of woody cover in African savannas. Nature , 2005, 438( 7069): 846–849 https://doi.org/10.1038/nature04070
pmid: 16341012
88
J C, Menault R, Barbault P, Lavelle M Lepage. African savannas: biological systems of humification and mineralization. In: Tothill J C, Mott J J, eds. Ecology and Management of the World’s Savannas. Canberra: Australian Academy of Science , 1985
89
T, Hengl J G B, Leenaars K D, Shepherd M G, Walsh G B M, Heuvelink T, Mamo H, Tilahun E, Berkhout M, Cooper E, Fegraus I, Wheeler N A Kwabena. Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning. Nutrient Cycling in Agroecosystems , 2017, 109( 1): 77–102 https://doi.org/10.1007/s10705-017-9870-x
pmid: 33456317
90
R W S, Fynn R J, Haynes T G O’connor. Burning causes long-term changes in soil organic matter contentof a South African Grassland. Soil Biology & Biochemistry , 2003, 35( 5): 677–687 https://doi.org/10.1016/S0038-0717(03)00054-3
M, Bauters T W, Drake H, Verbeeck S, Bodé P, Hervé-Fernández P, Zito D C, Podgorski F, Boyemba I, Makelele Ntaboba L, Cizungu R G M, Spencer P Boeckx. High fire-derived nitrogen deposition on central African forests. Proceedings of the National Academy of Sciences of the United States of America , 2018, 115( 3): 549–554 https://doi.org/10.1073/pnas.1714597115
pmid: 29295919
93
M K Mompati. Atmospheric deposition of sulphur and nitrogen over eastern South Africa. Dissertation for the Master’s Degree. Porchefstroom: North West University , 2019
94
M, Ossohou C, Galy-Lacaux V, Yoboué M, Adon C, Delon E, Gardrat I, Konaté A, Ki R Zouzou. Long-term atmospheric inorganic nitrogen deposition in West Africam savanna over 16 year period (Lamto, Cote d’Ivoire). Environmental Research Letters , 2021, 16( 1): 015004 https://doi.org/10.1088/1748-9326/abd065
95
R W S, Fynn T G O’connor. Determinants of community organization of a South African mesic grassland. Journal of Vegetation Science , 2005, 16( 1): 93–102 https://doi.org/10.1111/j.1654-1103.2005.tb02342.x
96
Z, Tsvuura K P Kirkman. Yield and species composition of a mesic grassland savanna in South Africa are influenced by long-term nutrient addition. Austral Ecology , 2013, 38( 8): 959–970 https://doi.org/10.1111/aec.12040
97
Roux N P, Le M T Mentis. Veld compositional response to fertilization in the tall grassveld of Natal. South African Journal of Plant and Soil , 1986, 3( 1): 1–10 https://doi.org/10.1080/02571862.1986.10634177
98
Z, Tsvuura M L, Avolio K P Kirkman. Nutrient addition increases biomass of soil fungi: evidence from a South African Grassland. South African Journal of Plant and Soil , 2017, 34( 1): 71–73 https://doi.org/10.1080/02571862.2016.1183147
99
D, Ward K, Kirkman N, Hagenah Z Tsvuura. Soil respiration declines with increasing nitrogen fertilization and is not related to productivity in long-term grassland experiments. Soil Biology & Biochemistry , 2017, 115 : 415–422 https://doi.org/10.1016/j.soilbio.2017.08.035
100
R W S, Fynn C D, Morris K P Kirkman. Plant strategies and trait trade-offs influence trends in competitive ability along gradients of soil fertility and disturbance. Journal of Ecology , 2005, 93( 2): 384–394 https://doi.org/10.1111/j.0022-0477.2005.00993.x
101
R, Fynn C, Morris D, Ward K Kirkman. Trait–environment relations for dominant grasses in South African mesic grassland support a general leaf economic model. Journal of Vegetation Science , 2011, 22( 3): 528–540 https://doi.org/10.1111/j.1654-1103.2011.01268.x
102
H A, Snyman I B Oosthuizen. Influence of fertilization on botanical composition and productivity of rangeland in a semi-arid climate of South Africa. In: XIX International Grassland Congress. São Pedro: Fundacao de Estudos Agrarios Luiz de Queiroz , 2001
F, Ludwig Kroon H, De H H T, Prins F Berendse. Effects of nutrients and shade on tree-grass interactions in an East African savanna. Journal of Vegetation Science , 2001, 12( 4): 579–588 https://doi.org/10.2307/3237009
105
E W III, Hamilton M S, Giovannini S A, Moses J S, Coleman S J McNaughton. Biomass and mineral element responses of a Serengeti short-grass species to nitrogen supply and defoliation: compensation requires a critical [N]. Oecologia , 1998, 116( 3): 407–418 https://doi.org/10.1007/s004420050604
pmid: 28308073
106
D, Ward K, Kirkman Z Tsvuura. An African grassland responds similarly to long-term fertilization to the Park Grass experiment. PLoS One , 2017, 12( 5): e0177208 https://doi.org/10.1371/journal.pone.0177208
pmid: 28493915
107
D, Ward K P, Kirkman Z, Tsvuura C, Morris R W S Fynn. Are there common assembly rules fro different grasslands? Comparisons of long-term data from a subtropical grassland with temperate grasslands.. Journal of Vegetation Science , 2020, 31( 5): 780–791 https://doi.org/10.1111/jvs.12906
108
K P, Kirkman S L, Collins M D, Smith A K, Knapp D E, Burkepile C E, Burns R W S, Fynn N, Hagenah K J, Matchett D I, Thompson K R, Wilcox P D Wragg. Responses to fire differ between South African and North American grassland communities. Journal of Vegetation Science , 2014, 25( 3): 793–804 https://doi.org/10.1111/jvs.12130
109
G M, Buis J M, Blair D E, Burkepile C E, Burns A J, Chamberlain P L, Chapman S L, Collins R W S, Fynn N, Govender K P, Kirkman M D, Smith A K Knapp. Controls of aboveground net primary production in mesic savanna grasslands: an inter-hemispheric comparison. Ecosystems , 2009, 12( 6): 982–995 https://doi.org/10.1007/s10021-009-9273-1
110
M D, Smith A K, Knapp S L, Collins D E, Burkepile K P, Kirkman S E, Koerner D I, Thompson J M, Blair C E, Burns S, Eby E J, Forrestel R W S, Fynn N, Govender N, Hagenah D L, Hoover K R Wilcox. Shared drivers but divergent ecological responses: insights from long-term experiments in mesic savanna grasslands. Bioscience , 2016, 66( 8): 666–682 https://doi.org/10.1093/biosci/biw077
111
P A, Fay S M, Prober W S, Harpole J M H, Knops J D, Bakker E T, Borer E M, Lind A S, MacDougall E W, Seabloom P D, Wragg P B, Adler D M, Blumenthal Y M, Buckley C, Chu E E, Cleland S L, Collins K F, Davies G, Du X, Feng J, Firn D S, Gruner N, Hagenah Y, Hautier R W, Heckman V L, Jin K P, Kirkman J, Klein L M, Ladwig Q, Li R L, McCulley B A, Melbourne C E, Mitchell J L, Moore J W, Morgan A C, Risch M, Schütz C J, Stevens D A, Wedin L H Yang. Grassland productivity limited by multiple nutrients. Nature Plants , 2015, 1( 7): 15080 https://doi.org/10.1038/nplants.2015.80
pmid: 27250253
112
W S, Harpole L L, Sullivan E M, Lind J, Firn P B, Adler E T, Borer J, Chase P A, Fay Y, Hautier H, Hillebrand A S, MacDougall E W, Seabloom R, Williams J D, Bakker M W, Cadotte E J, Chaneton C, Chu E E, Cleland C, D’Antonio K F, Davies D S, Gruner N, Hagenah K, Kirkman J M H, Knops Pierre K J, La R L, McCulley J L, Moore J W, Morgan S M, Prober A C, Risch M, Schuetz C J, Stevens P D Wragg. Addition of multiple limiting resources reduces grassland diversity. Nature , 2016, 537( 7618): 93–96 https://doi.org/10.1038/nature19324
pmid: 27556951
113
H, Flores-Moreno P B, Reich E M, Lind L L, Sullivan E W, Seabloom L, Yahdjian A S, MacDougall L G, Reichmann J, Alberti S, Báez J D, Bakker M W, Cadotte M C, Caldeira E J, Chaneton C M, D’Antonio P A, Fay J, Firn N, Hagenah W S, Harpole O, Iribarne K P, Kirkman J M H, Knops Pierre K J, La R, Laungani A D B, Leakey R L, McCulley J L, Moore J, Pascual E T Borer. Climate modifies response of non-native and native species richness to nutrient enrichment. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences , 2016, 371( 1694): 20150273 https://doi.org/10.1098/rstb.2015.0273
pmid: 27114575
114
S C, Pennings C M, Clark E E, Cleland S L, Collins L, Gough K L, Gross D G, Milchunas K N Suding. Do individual plant species show predictable responses to nitrogen addition across multiple experiments. Oikos , 2005, 110( 3): 547–555 https://doi.org/10.1111/j.0030-1299.2005.13792.x
115
M I, Goldstein D A Dellasala. Encyclopedia of the World’s Biomes. Elsevier , 2020
116
N A, Soudzilovskaia V G Onipchenko. Experimental investigation of fertilization and irrigation effects on an alpine heath, northwestern Caucasus, Russia. Arctic, Antarctic, and Alpine Research , 2005, 37( 4): 602–610 https://doi.org/10.1657/1523-0430(2005)037[0602:EIOFAI]2.0.CO;2
117
M P, Srinivasan S K, Gleeson M A Arthur. Short-term impacts of nitrogen fertilization on a montane grassland ecosystem in a South Asian biodiversity hotspot. Plant Ecology & Diversity , 2012, 5( 3): 289–299 https://doi.org/10.1080/17550874.2012.727486
118
P, Verma R, Sagar H, Verma P, Verma D K Singh. Changes in species composition, diversity and biomass of herbaceous plant traits due to N amendment in a dry tropical environment of India. Journal of Plant Ecology , 2015, 8( 3): 321–332 https://doi.org/10.1093/jpe/rtu018
119
W, Han J, Cao J, Liu J, Jiang J Ni. Impacts of nitrogen deposition on terrestrial plant diversity: a meta-analysis in China. Journal of Plant Ecology , 2019, 12( 6): 1025–1033 https://doi.org/10.1093/jpe/rtz036
120
S, Palpurina M, Chytrý N, Hölzel L, Tichý V, Wagner M, Horsák I, Axmanová M, Hájek P, Hájková M, Freitag Z, Lososová W, Mathar R, Tzonev J, Danihelka P Dřevojan. The type of nutrient limitation affects the plant species richness—productivity relationship: evidence from dry grasslands across Eurasia. Journal of Ecology , 2019, 107( 3): 1038–1050 https://doi.org/10.1111/1365-2745.13084
121
B L, Lin Y, Kumon K, Inoue N, Tobari M, Xue K, Tsunemi A Terada. Increased nitrogen deposition contributes to plant biodiversity loss in Japan: insights from long-term historical monitoring data. Environmental Pollution , 2021, 290 : 118033 https://doi.org/10.1016/j.envpol.2021.118033
pmid: 34467882
122
P, Lu T, Hao X, Li H, Wang X, Zhai Q, Tian W, Bai C, Stevens W H Zhang. Ambient nitrogen deposition drives plant-diversity decline by nitrogen accumulation in a closed grassland ecosystem. Ambient nitrogen deposition drives plant-diversity decline by nitrogen accumulation in a closed grassland ecosystem. Journal of Applied Ecology , 2021, 58( 9): 1888–1898 https://doi.org/10.1111/1365-2664.13858
123
V R, Squires J, Dengler L, Hua H Feng. Grasslands of the world: diversity, management and conservation. CRC Press , 2018
124
Y, Fang F, Xun W, Bai W, Zhang L Li. Long-term nitrogen addition leads to loss of species richness due to litter accumulation and soil acidification in a temperate steppe. PLoS One , 2012, 7( 10): e47369 https://doi.org/10.1371/journal.pone.0047369
pmid: 23077603
125
L, Song X, Bao X, Liu F Zhang. Impact of nitrogen addition on plant community in a semi-arid temperate steppe in China. Journal of Arid Land , 2012, 4( 1): 3–10 https://doi.org/10.3724/SP.J.1227.2012.00003
126
Y, Bai J, Wu C M, Clark S, Naeem Q, Pan J, Huang L, Zhang X Han. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands. Global Change Biology , 2010, 16( 1): 358–372 https://doi.org/10.1111/j.1365-2486.2009.01950.x
127
Y, Zhang J, Feng F, Isbell X, Lü X Han. Productivity depends more on the rate than the frequency of N addition in a temperate grassland. Scientific Reports , 2015, 5( 1): 12558 https://doi.org/10.1038/srep12558
pmid: 26218675
128
W, Bai D, Guo Q, Tian N, Liu W, Cheng L, Li W Zhang. Differential responses of grasses and forbs led to marked reduction in below‐ground productivity in temperate steppe following chronic N deposition. Journal of Ecology , 2015, 103( 6): 1570–1579 https://doi.org/10.1111/1365-2745.12468
129
Z, Xu H, Ren M H, Li I, Brunner J, Yin H, Liu D, Kong X T, Lü T, Sun J, Cai R, Wang Y, Zhang P, He X, Han S, Wan Y Jiang. Experimentally increased water and nitrogen affect root production and vertical allocation of an old-field grassland. Plant and Soil , 2017, 412( 1–2): 369–380 https://doi.org/10.1007/s11104-016-3071-2
130
Z, Lan Y Bai. Testing mechanisms of N-enrichment-induced species loss in a semiarid Inner Mongolia grassland: critical thresholds and implications for long-term ecosystem responses. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences , 2012, 367( 1606): 3125–3134 https://doi.org/10.1098/rstb.2011.0352
pmid: 23045710
131
Z, Lan G D, Jenerette S, Zhan W, Li S, Zheng Y Bai. Testing the scaling effects and mechanisms of N-induced biodiversity loss: evidence from a decade-long grassland experiment. Journal of Ecology , 2015, 103( 3): 750–760 https://doi.org/10.1111/1365-2745.12395
132
T, Hao L, Song K, Goulding F, Zhang X Liu. Cumulative and partially recoverable impacts of nitrogen addition on a temperate steppe. Ecological Applications , 2018, 28( 1): 237–248 https://doi.org/10.1002/eap.1647
pmid: 29113017
133
G J, Yang X T, Lü C J, Stevens G M, Zhang H Y, Wang Z W, Wang Z J, Zhang Z Y, Liu X G Han. Mowing mitigates the negative impacts of N addition on plant species diversity. Oecologia , 2019, 189( 3): 769–779 https://doi.org/10.1007/s00442-019-04353-9
pmid: 30725373
134
Q, Tian N, Liu W, Bai L, Li J, Chen P B, Reich Q, Yu D, Guo M D, Smith A K, Knapp W, Cheng P, Lu Y, Gao A, Yang T, Wang X, Li Z, Wang Y, Ma X, Han W H Zhang. A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe. Ecology , 2016, 97( 1): 65–74 https://doi.org/10.1890/15-0917.1
pmid: 27008776
135
G, Fu Z X Shen. Response of alpine plants to nitrogen addition on the Tibetan Plateau: a meta-analysis. Journal of Plant Growth Regulation , 2016, 35( 4): 974–979 https://doi.org/10.1007/s00344-016-9595-0
136
S, Li S, Dong H, Shen Y, Han J, Zhang Y, Xu X, Gao M, Yang Y, Li Z, Zhao S, Liu H, Zhou Q, Dong J C Yeomans. Different responses of multifaceted plant diversities of alpine meadow and alpine steppe to nitrogen addition gradients on Qinghai-Tibetan Plateau. Science of the Total Environment , 2019, 688 : 1405–1412 https://doi.org/10.1016/j.scitotenv.2019.06.211
pmid: 31726568
137
D, Wang H, Zhou B, Yao W, Wang S, Dong Z, Shang Y, She L, Ma X, Huang Z, Zhang Q, Zhang F, Zhao J, Zuo Z Mao. Effects of nutrient addition on degraded alpine grasslands of the Qinghai-Tibetan Plateau: a meta-analysis. Agriculture, Ecosystems & Environment , 2020, 301 : 106970 https://doi.org/10.1016/j.agee.2020.106970
138
Z, Yang Y, Hautier E T, Borer C, Zhang G Du. Abundance- and functional-based mechanisms of plant diversity loss with fertilization in the presence and absence of herbivores. Oecologia , 2015, 179( 1): 261–270 https://doi.org/10.1007/s00442-015-3313-7
pmid: 25969333
139
K, Li X, Liu L, Song Y, Gong C, Lu P, Yue C, Tian F Zhang. Response of alpine grassland to elevated nitrogen deposition and water supply in China. Oecologia , 2015, 177( 1): 65–72 https://doi.org/10.1007/s00442-014-3122-4
pmid: 25407621
140
N, Zong G, Zhao P Shi. Different sensitivity and threshold in response to nitrogen addition in four alpine grasslands along a precipitation transect on the Northern Tibetan Plateau. Ecology and Evolution , 2019, 9( 17): 9782–9793 https://doi.org/10.1002/ece3.5514
pmid: 31534693
141
K, Niu P, Choler Bello F, De N, Mirotchnick G, Du S Sun. Fertilization decreases species diversity but increases functional diversity: a three-year experiment in a Tibetan alpine meadow. Agriculture, Ecosystems & Environment , 2014, 182 : 106–112 https://doi.org/10.1016/j.agee.2013.07.015
142
R, Sagar P, Verma H, Verma D K, Singh P Verma. Species diversity—Primary productivity relationships in a nitrogen amendment experiment in grasslands at Varanasi, India. Current Science , 2015, 108( 12): 2163–2166
143
P, Verma R Sagar. Responses of diversity, productivity, and stability to the nitrogen input in a tropical grassland. Ecological Applications , 2020, 30( 2): e02037 https://doi.org/10.1002/eap.2037
pmid: 31710402
144
Y H, Yang C J, Ji W H, Ma S F, Wang S P, Wang W X, Han A, Mohammat D, Robinson P Smith. Significant soil acidification across northern China’s grasslands during 1980s–2000s. Global Change Biology , 2012, 18( 7): 2292–2300 https://doi.org/10.1111/j.1365-2486.2012.02694.x
145
Y, Zhang X, Lü F, Isbell C, Stevens X, Han N, He G, Zhang Q, Yu J, Huang X Han. Rapid plant species loss at high rates and at low frequency of N addition in temperate steppe. Global Change Biology , 2014, 20( 11): 3520–3529 https://doi.org/10.1111/gcb.12611
pmid: 24753127
146
M M C, Bustamante E, Medina G P, Asner G B, Nardoto D C Garcia-Montiel. Nitrogen cycling in tropical and temperate savannas. Biogeochemistry , 2006, 79( 1–2): 209–237 https://doi.org/10.1007/s10533-006-9006-x
147
J, Blair J, Nippert J Briggs. Grassland ecology. In: Monson R K. Ecology and the Environment. Springer , 2014, 389–423
148
A P, Dixon D, Faber‐Langendoen C, Josse J, Morrison C J Loucks. Distribution mapping of world grassland types. Journal of Biogeography , 2014, 41( 11): 2003–2019 https://doi.org/10.1111/jbi.12381
149
E, Dinerstein D, Olson A, Joshi C, Vynne N D, Burgess E, Wikramanayake N, Hahn S, Palminteri P, Hedao R, Noss M, Hansen H, Locke E C, Ellis B, Jones C V, Barber R, Hayes C, Kormos V, Martin E, Crist W, Sechrest L, Price J E M, Baillie D, Weeden K, Suckling C, Davis N, Sizer R, Moore D, Thau T, Birch P, Potapov S, Turubanova A, Tyukavina Souza N, de L, Pintea J C, Brito O A, Llewellyn A G, Miller A, Patzelt S A, Ghazanfar J, Timberlake H, Klöser Y, Shennan-Farpón R, Kindt J B, Lillesø Breugel P, van L, Graudal M, Voge K F, Al-Shammari M Saleem. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience , 2017, 67( 6): 534–545 https://doi.org/10.1093/biosci/bix014
pmid: 28608869
150
A R, Kozovits M M C Bustamante. Land use change, air pollution and climate change—Vegetation response in Latin America. In: Matyssek R, Clarke N, Cudlin P, Mikkelsen T N, Tuovinen J P, Wieser G, Paoletti E, eds. Developments in Environmental Science. Elsevier , 2013, 13 : 411–427
151
C R G, Reis F S, Pacheco S C, Reed G, Tejada G B, Nardoto M C, Forti J P Ometto. Biological nitrogen fixation across major biomes in Latin America: patterns and global change effects. Science of the Total Environment , 2020, 746 : 140998 https://doi.org/10.1016/j.scitotenv.2020.140998
pmid: 32763600
152
D López-Hernández. N biogeochemistry and cycling in two well-drained savannas: a comparison between the Orinoco Basin (Llanos, Venezuela) and Ivory Coast (western Africa). Chemistry and Ecology , 2013, 29( 3): 280–295 https://doi.org/10.1080/02757540.2012.744830
153
F, Borghetti E, Barbosa L, Ribeiro J F, Ribeiro B M T Walter. South American savannas. In: Scogings P F, Sankaran M, eds. Savanna Woody Plants and Large Herbivores. Wiley , 2019, 77–122
154
M M C, Bustamante Brito D Q, De A R, Kozovits G, Luedemann Mello T R B, De Siqueira Pinto A, De C B R, Munhoz F S C Takahashi. Effects of nutrient additions on plant biomass and diversity of the herbaceous-subshrub layer of a Brazilian savanna (Cerrado). Plant Ecology , 2012, 213( 5): 795–808 https://doi.org/10.1007/s11258-012-0042-4
155
Chiesa T, Della G, Piñeiro L Yahdjian. Gross, background, and net anthropogenic soil nitrous oxide emissions from soybean, corn, and wheat croplands. Journal of Environmental Quality , 2019, 48( 1): 16–23 https://doi.org/10.2134/jeq2018.07.0262
pmid: 30640356
156
J P, Ometto N L, Ascarrunz A T, Austin M M, Bustamante G, Cunha-Zeri M C, Forti J, Hoelzemann V J, Jaramillo L A, Martinelli F, Pacheco C, Perez T, Perez A Stein. The Latin America regional nitrogen centre: concepts and recent activities. In: Sutton M A, Mason K E, Bleeker A, Hicks W K, Masson C, Raghuram N, Reis S, Bekunda M, eds. Just Enough Nitrogen. Springer , 2020, 499–514
157
R, Vet R S, Artz S, Carou M, Shaw C U, Ro W, Aas A, Baker V C, Bowersox F, Dentener C, Galy-Lacaux A, Hou J J, Pienaar R, Gillett M C, Forti S, Gromov H, Hara T, Khodzher N M, Mahowald S, Nickovico P S P, Rao N W Reid. A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmospheric Environment , 2014, 93 : 3–100 https://doi.org/10.1016/j.atmosenv.2013.10.060
158
M L, Bueno K G, Dexter R T, Pennington V, Pontara D M, Neves J A, Ratter Oliveira‐Filho A T De. The environmental triangle of the Cerrado Domain: ecological factors driving shifts in tree species composition between forests and savannas. Journal of Ecology , 2018, 106( 5): 2109–2120 https://doi.org/10.1111/1365-2745.12969
159
N N, Barger C M, D’antonio T, Ghneim K, Brink E Cuevas. Nutrient limitation to primary productivity in a secondary savanna in Venezuela. Biotropica , 2002, 34( 4): 493–501 https://doi.org/10.1111/j.1744-7429.2002.tb00569.x
160
S M, Copeland E M, Bruna L V B, Silva M C, Mack H L Vasconcelos. Short‐term effects of elevated precipitation and nitrogen on soil fertility and plant growth in a neotropical savanna. Ecosphere , 2012, 3( 4): 1–20 https://doi.org/10.1890/ES11-00305.1
161
G, Sarmiento Silva M P, Da M E, Naranjo M Pinillos. Nitrogen and phosphorus as limiting factors for growth and primary production in a flooded savanna in the Venezuelan Llanos. Journal of Tropical Ecology , 2006, 22( 2): 203–212 https://doi.org/10.1017/S0266467405003068
162
L, Yahdjian L, Gherardi O E Sala. Grasses have larger response than shrubs to increased nitrogen availability: a fertilization experiment in the Patagonian steppe. Journal of Arid Environments , 2014, 102 : 17–20 https://doi.org/10.1016/j.jaridenv.2013.11.002
163
P, Flombaum L, Yahdjian O E Sala. Global-change drivers of ecosystem functioning modulated by natural variability and saturating responses. Global Change Biology , 2017, 23( 2): 503–511 https://doi.org/10.1111/gcb.13441
pmid: 27435939
164
J G Mcivor. Australian grasslands. In: Suttie J M, Reynolds S G, Batello C, eds. Grasslands of the World. Rome: Food and Agriculture Organization of the United Nations (FAO) , 2005
165
L W, Bell R C, Hayes K G, Pembleton C M Waters. Opportunities and challenges in Australian grasslands: pathways to achieve future sustainability and productivity imperatives. Crop & Pasture Science , 2014, 65( 6): 489–507 https://doi.org/10.1071/CP13420
166
H, Lambers M C, Brundrett J A, Raven S D Hopper. Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant and Soil , 2011, 348( 1–2): 7–27 https://doi.org/10.1007/s11104-011-0977-6
J C, Noble D S, Hik A R E Sinclair. Landscape ecology of the burrowing bettong: fire and marsupial biocontrol of shrubs in semi-arid Australia. Rangeland Journal , 2007, 29( 1): 107–119 https://doi.org/10.1071/RJ06041
169
D B, Lindenmayer W, Steffen A A, Burbidge L, Hughes R L, Kitching W, Musgrave M S, Smith P A Wernera. Conservation strategies in response to rapid climate change: Australia as a case study. Biological Conservation , 2010, 143( 7): 1587–1593 https://doi.org/10.1016/j.biocon.2010.04.014
170
J W Morgan. Patterns of invasion of an urban remnant of a species-rich grassland in southeastern Australia by non-native plant species. Journal of Vegetation Science , 1998, 9( 2): 181–190 https://doi.org/10.2307/3237117
171
S M, Decina L R, Hutyra P H Templer. Hotspots of nitrogen deposition in the world’s urban areas: a global data synthesis. Frontiers in Ecology and the Environment , 2020, 18( 2): 92–100 https://doi.org/10.1002/fee.2143
172
G P, Ayers H, Malfroy R W, Gillett D, Higgins P W, Selleck J C Marshall. Deposition of acidic species at a rural location in New South Wales, Australia. Water, Air, and Soil Pollution , 1995, 85( 4): 2089–2094 https://doi.org/10.1007/BF01186142
173
F, Dentener J, Drevet J F, Lamarque I, Bey B, Eickhout A M, Fiore D, Hauglustaine L W, Horowitz M, Krol U C, Kulshrestha M, Lawrence C, Galy-Lacaux S, Rast D, Shindell D, Stevenson Noije T, Van C, Atherton N, Bell D, Bergman T, Butler J, Cofala B, Collins R, Doherty K, Ellingsen J, Galloway M, Gauss V, Montanaro J F, Muller G, Pitari J, Rodriguez M, Sanderson F, Solmon S, Strahan M, Schultz K, Sudo S, Szopa O Wild. Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Global Biogeochemical Cycles , 2006, 20( 4): GB4003 https://doi.org/10.1029/2005GB002672
174
A, Stohl S, Eckhardt C, Forster P, James N Spichtinger. On the pathways and timescales of intercontinental air pollution transport. Journal of Geophysical Research Atmospheres , 2002, 107(D23): ACH 6-1−ACH 6-17
175
I, Longley B, Tunno E, Somervell S, Edwards G, Olivares S, Gray G, Coulson L, Cambal C, Roper L, Chubb J E Clougherty. Assessment of spatial variability across multiple pollutants in Auckland, New Zealand. International Journal of Environmental Research and Public Health , 2019, 16( 9): 1567 https://doi.org/10.3390/ijerph16091567
pmid: 31060269
176
J, Shen D, Chen M, Bai J, Sun T, Coates S K, Lam Y Li. Ammonia deposition in the neighbourhood of an intensive cattle feedlot in Victoria, Australia. Scientific Reports , 2016, 6( 1): 32793 https://doi.org/10.1038/srep32793
pmid: 27600433
177
M, Hendryx M S, Islam G H, Dong G Paul. Air pollution emissions 2008–2018 from Australian coal mining: implications for public and occupational health. International Journal of Environmental Research and Public Health , 2020, 17( 5): 1570 https://doi.org/10.3390/ijerph17051570
pmid: 32121344
178
J N, Galloway A, Bleeker J W Erisman. The human creation and use of reactive nitrogen: a global and regional perspective. Annual Review of Environment and Resources , 2021, 46( 1): 255–288 https://doi.org/10.1146/annurev-environ-012420-045120
179
E T, Borer J B, Grace W S, Harpole A S, Macdougall E W Seabloom. A decade of insights into grassland ecosystem responses to global environmental change. Nature Ecology & Evolution , 2017, 1 : 0118
180
R, Ochoa-Hueso M, Delgado-Baquerizo King P T, An M, Benham V, Arca S A Power. Ecosystem type and resource quality are more important than global change drivers in regulating early stages of litter decomposition. Soil Biology & Biochemistry , 2019, 129 : 144–152 https://doi.org/10.1016/j.soilbio.2018.11.009
181
R J, Standish J B, Fontaine R J, Harris W D, Stock R J Hobbs. Interactive effects of altered rainfall and simulated nitrogen deposition on seedling establishment in a global biodiversity hotspot. Oikos , 2012, 121( 12): 2014–2025 https://doi.org/10.1111/j.1600-0706.2012.20553.x