Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

邮发代号 80-906

Frontiers of Agricultural Science and Engineering  2022, Vol. 9 Issue (4): 602-613   https://doi.org/10.15302/J-FASE-2022462
  本期目录
DISCIPLINE SYSTEM OF ALFALFA BIOLOGY: FROM MULTIOMICS TO BIOLOGICAL BREEDING
Tao WANG()
State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China
 全文: PDF(1776 KB)   HTML
Abstract

● This review systematically raises the subject concept of alfalfa biology.

● The discipline of alfalfa biology has been divided into six major sections.

● The recent advances from the perspective of discipline system have been reviewed.

Alfalfa (Medicago sativa) is the main leguminous forage crop with great ecologic and economic value. The research of alfalfa in various fields has exploded, but has not been included in a systematic framework. This paper summarizes the status of global alfalfa research over the past 10 years, raise the subject concept of alfalfa biology, and review the recent advances from the perspective of discipline system as germplasm resources, multiomics and biotechnology, environmental biology, symbiotic nitrogen fixation, biological breeding and cultivation. This paper proposes the key unsolved scientific and technical issues in alfalfa biology, and hope to appeal the research interest of more plant scientists and to promote the development of alfalfa industry.

Key wordsalfalfa    discipline system    forage biology    lucerne    Medicago sativa
收稿日期: 2022-04-22      出版日期: 2022-11-07
Corresponding Author(s): Tao WANG   
 引用本文:   
. [J]. Frontiers of Agricultural Science and Engineering, 2022, 9(4): 602-613.
Tao WANG. DISCIPLINE SYSTEM OF ALFALFA BIOLOGY: FROM MULTIOMICS TO BIOLOGICAL BREEDING. Front. Agr. Sci. Eng. , 2022, 9(4): 602-613.
 链接本文:  
https://academic.hep.com.cn/fase/CN/10.15302/J-FASE-2022462
https://academic.hep.com.cn/fase/CN/Y2022/V9/I4/602
Country code (ISO 3166-1) Publications (× 102) Citationsa (× 103) Documents citedb (%) CNCIc
USA 11.96 25.544 95.2 1.03
CHN 6.63 13.791 96.4 1.03
CAN 3.39 7.352 96.8 1.19
AUS 2.75 5.553 98.6 1.02
FRA 1.98 4.980 93.9 1.18
ESP 2.44 4.973 96.3 1.09
DEU 1.87 4.783 96.3 1.14
GBR 1.21 4.302 99.2 1.55
ITA 1.84 3.997 97.3 1.06
IRN 2.11 3.052 91.5 0.75
NLD 0.81 2.776 98.8 1.60
NZL 0.95 2.314 99.0 1.30
CHE 0.96 1.593 92.7 0.96
JPN 0.93 1.454 97.9 0.82
ARG 1.06 1.393 98.1 0.56
Tab.1  
Country code (ISO 3166-1) Publications (× 102) Citationsa (× 103) Documents citedb (%) CNCIc
CHN 14.63 11.034 78.7 1.05
USA 13.67 9.295 77.5 1.02
CAN 3.53 2.849 81.6 1.30
AUS 3.26 2.295 85.3 1.20
ESP 2.31 2.158 84.0 1.18
ITA 2.19 2.001 84.5 1.30
DEU 2.36 1.912 86.0 1.07
FRA 1.95 1.446 80.5 0.89
IRN 2.54 1.302 75.2 0.73
GBR 1.48 1.275 85.1 1.73
BRA 1.66 1.105 78.9 0.98
CHE 1.33 0.979 75.2 0.98
KOR 0.96 0.839 84.4 1.31
MEX 1.45 0.803 71.0 0.56
NLD 0.56 0.769 89.3 1.63
Tab.2  
Research institution Publications (× 102) Citationsa (× 103) Documents citedb (%) CNCIc
United States Department of Agriculture 3.18 5.770 92.8 1.03
Chinese Academy of Sciences 1.49 3.709 97.3 1.11
Agriculture & Agri Food Canada 1.64 3.131 97.6 1.13
France’s National Research Institute for Agriculture, Food and Environment (INRAE) 1.22 3.057 95.9 1.24
Cornell University 0.75 2.786 97.3 1.36
Consejo Superior de Investigaciones Científicas 1.26 2.664 96.8 1.08
University of California System 0.85 2.527 100 1.32
Centre National de la Recherche Scientifique 0.72 2.456 98.6 1.36
Nanjing Agricultural University 0.65 2.307 100 1.67
University of Wisconsin System 0.96 2.201 95.8 1.14
University of Wisconsin Madison 0.90 1.947 95.6 1.10
University of Minnesota System 0.71 1.835 91.6 1.18
University of Minnesota Twin Cities 0.70 1.829 91.4 1.19
Chinese Academy of Agricultural Sciences 1.01 1.612 96.0 0.85
Noble Research Institute 0.42 1.543 95.2 1.42
Northwest A&F University 0.62 1.528 98.4 1.25
China Agricultural University 0.95 1.452 94.7 0.92
Commonwealth Scientific & Industrial Research Organisation 0.57 1.299 100 1.12
University of Western Australia 0.54 1.205 100 1.04
Islamic Azad University 0.36 1.040 75.0 0.75
Tab.3  
Research institution Publications (× 102) Citationsa (× 103) Documents citedb (%) CNCIc
Chinese Academy of Sciences (CAS) 2.69 2.756 80.3 1.20
United States Department of Agriculture 3.41 2.017 76.8 0.89
China Agricultural University 2.16 1.705 83.3 1.20
Nanjing Agricultural University 1.26 1.356 86.5 1.40
Consejo Superior de Investigaciones Científicas 1.01 1.311 91.1 1.33
Agriculture & Agri Food Canada 1.72 1.265 79.7 0.99
Chinese Academy of Agricultural Sciences 1.88 1.146 83.5 0.93
Northwest A&F University 1.20 1.129 80.8 1.26
University of California System 1.22 1.099 86.9 1.12
France’s National Research Institute for Agriculture, Food and Environment (INRAE) 1.25 1.078 83.2 0.95
University of Chinese Academy of Sciences, CAS 1.09 1.041 78.9 1.36
Lanzhou University 1.53 0.913 69.9 1.01
State University System of Florida 0.72 0.710 80.6 1.82
University of Florida 0.68 0.698 80.9 1.90
University of Western Australia 0.63 0.634 82.5 1.22
Cornell University 0.59 0.615 81.4 1.08
Institute of Soil & Water Conservation, CAS 0.54 0.595 81.5 1.54
University of Wisconsin System 0.97 0.590 79.4 1.13
University of Wisconsin Madison 0.90 0.574 78.9 1.19
University of California, Davis 0.72 0.555 84.7 1.02
Tab.4  
Fig.1  
1 D Undersander. Economic importance, practical limitations to production, management, and breeding targets of alfalfa. In: Yu L X, Kole C, eds. The Alfalfa Genome. Compendium of Plant Genomes. Cham: Springer, 2021, 1–11
2 F, He K, Xie L, Wan X Li. The role of alfalfa on the maintenance of food security in China. Journal of Agricultural Science and Technology, 2014, 16(6): 7− 13 ( in Chinese)
3 D H Putnam. Factors influencing yield and quality in alfalfa. In: Yu L X, Kole C, eds. The Alfalfa Genome. Compendium of Plant Genomes. Cham: Springer, 2021, 13–27
4 Z, Wang M Şakiroğlu. The origin, evolution, and genetic diversity of alfalfa. In: Yu L X, Kole C, eds. The Alfalfa Genome. Compendium of Plant Genomes. Cham: Springer, 2021, 29–42
5 B M, Irish S L Greene. Germplasm collection, genetic resources, and gene pools in alfalfa. In: Yu L X, Kole C, eds. The Alfalfa Genome. Compendium of Plant Genomes. Cham: Springer, 2021, 43–64
6 M K, Mejia-Guerra D, Zhao M J Sheehan. Genomic resources for breeding in alfalfa: availability, utility and adoption. In: Yu L X, Kole C, eds. The Alfalfa Genome. Compendium of Plant Genomes. Cham: Springer, 2021, 177–189
7 D A, Samac S J Temple. Biotechnology advances in alfalfa. In: Yu L X, Kole C, eds. The Alfalfa genome. Compendium of Plant Genomes. Cham: Springer, 2021, 65–86
8 R W K, Potter M, Szomszor J Adams. Comparing standard, collaboration and fractional CNCI at the institutional level: consequences for performance evaluation. Scientometrics, 2022 [Published Online]
9 W Wang. Improving China’s alfalfa industry development: an economic analysis. China Agricultural Economic Review, 2021, 13( 1): 211–228
https://doi.org/10.1108/CAER-07-2019-0128
10 M, Şakiroğlu D İlhan. Medicago sativa species complex: revisiting the century-old problem in the light of molecular tools. Crop Science, 2021, 61( 2): 827–838
https://doi.org/10.1002/csc2.20316
11 C, Shen H, Du Z, Chen H, Lu F, Zhu H, Chen X, Meng Q, Liu P, Liu L, Zheng X, Li J, Dong C, Liang T Wang. The chromosome-level genome sequence of the autotetraploid alfalfa and resequencing of core germplasms provide genomic resources for alfalfa research. Molecular Plant, 2020, 13( 9): 1250–1261
https://doi.org/10.1016/j.molp.2020.07.003 pmid: 32673760
12 L, Chen F, He R, Long F, Zhang M, Li Z, Wang J, Kang Q Yang. A global alfalfa diversity panel reveals genomic selection signatures in Chinese varieties and genomic associations with root development. Journal of Integrative Plant Biology, 2021, 63( 11): 1937–1951
https://doi.org/10.1111/jipb.13172 pmid: 34487430
13 D, İlhan X, Li E C, Brummer M Şakiroğlu. Genetic diversity and population structure of tetraploid accessions of the Medicago sativa-falcata complex. Crop Science, 2016, 56( 3): 1146–1156
https://doi.org/10.2135/cropsci2015.12.0750
14 S, Yin Y, Wang Z Nan. Genetic diversity studies of alfalfa germplasm (Medicago sativa L. subsp sativa) of United States origin using microsatellite analysis. Legume Research, 2018, 41( 2): 202–207
15 J, Chen G, Wu N, Shrestha S, Wu W, Guo M, Yin A, Li J, Liu G Ren. Phylogeny and species delimitation of Chinese Medicago (Leguminosae) and its relatives based on molecular and morphological evidence. Frontiers in Plant Science, 2021, 11 : 619799
https://doi.org/10.3389/fpls.2020.619799 pmid: 33584760
16 C, He Z L, Xia T A, Campbell G R Bauchan. Development and characterization of SSR markers and their use to assess genetic relationships among alfalfa germplasms. Crop Science, 2009, 49( 6): 2176–2186
https://doi.org/10.2135/cropsci2007.04.0456
17 K K, Kidwell D F, Austin T C Osborn. RFLP evaluation of nine Medicago accessions representing the original germplasm sources for North American alfalfa cultivars. Crop Science, 1994, 34( 1): 230–236
https://doi.org/10.2135/cropsci1994.0011183X003400010042x
18 S Kumar. Biotechnological advancements in alfalfa improvement. Journal of Applied Genetics, 2011, 52( 2): 111–124
https://doi.org/10.1007/s13353-011-0028-2 pmid: 21279557
19 X, Li Y, Han Y, Wei A, Acharya A D, Farmer J, Ho M J, Monteros E C Brummer. Development of an alfalfa SNP array and its use to evaluate patterns of population structure and linkage disequilibrium. PLoS One, 2014, 9( 1): e84329
https://doi.org/10.1371/journal.pone.0084329 pmid: 24416217
20 D, Tussipkan S A Manabayeva. Alfalfa (Medicago Sativa L.): genotypic diversity and transgenic alfalfa for phytoremediation. Frontiers in Environmental Science, 2022, 10 : 828257
https://doi.org/10.3389/fenvs.2022.828257
21 N D, Young F, Debellé G E, Oldroyd R, Geurts S B, Cannon M K, Udvardi V A, Benedito K F X, Mayer J, Gouzy H, Schoof de Peer Y, Van S, Proost D R, Cook B C, Meyers M, Spannagl F, Cheung Mita S, De V, Krishnakumar H, Gundlach S, Zhou J, Mudge A K, Bharti J D, Murray M A, Naoumkina B, Rosen K A T, Silverstein H, Tang S, Rombauts P X, Zhao P, Zhou V, Barbe P, Bardou M, Bechner A, Bellec A, Berger H, Bergès S, Bidwell T, Bisseling N, Choisne A, Couloux R, Denny S, Deshpande X, Dai J J, Doyle A M, Dudez A D, Farmer S, Fouteau C, Franken C, Gibelin J, Gish S, Goldstein A J, González P J, Green A, Hallab M, Hartog A, Hua S J, Humphray D H, Jeong Y, Jing A, Jöcker S M, Kenton D J, Kim K, Klee H, Lai C, Lang S, Lin S L, Macmil G, Magdelenat L, Matthews J, McCorrison E L, Monaghan J H, Mun F Z, Najar C, Nicholson C, Noirot M, O’Bleness C R, Paule J, Poulain F, Prion B, Qin C, Qu E F, Retzel C, Riddle E, Sallet S, Samain N, Samson I, Sanders O, Saurat C, Scarpelli T, Schiex B, Segurens A J, Severin D J, Sherrier R, Shi S, Sims S R, Singer S, Sinharoy L, Sterck A, Viollet B B, Wang K, Wang M, Wang X, Wang J, Warfsmann J, Weissenbach D D, White J D, White G B, Wiley P, Wincker Y, Xing L, Yang Z, Yao F, Ying J, Zhai L, Zhou A, Zuber J, Dénarié R A, Dixon G D, May D C, Schwartz J, Rogers F, Quétier C D, Town B A Roe. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature, 2011, 480( 7378): 520–524
https://doi.org/10.1038/nature10625 pmid: 22089132
22 M, Hrbáčková P, Dvořák T, Takáč M, Tichá I, Luptovčiak O, Šamajová M, Ovečka J Šamaj. Biotechnological perspectives of omics and genetic engineering methods in alfalfa. Frontiers in Plant Science, 2020, 11 : 592
https://doi.org/10.3389/fpls.2020.00592 pmid: 32508859
23 C, Hawkins L X Yu. Recent progress in alfalfa (Medicago sativa L.) genomics and genomic selection. Crop Journal, 2018, 6( 6): 565–575
https://doi.org/10.1016/j.cj.2018.01.006
24 H, Chen Y, Zeng Y, Yang L, Huang B, Tang H, Zhang F, Hao W, Liu Y, Li Y, Liu X, Zhang R, Zhang Y, Zhang Y, Li K, Wang H, He Z, Wang G, Fan H, Yang A, Bao Z, Shang J, Chen W, Wang Q Qiu. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nature Communications, 2020, 11( 1): 2494
https://doi.org/10.1038/s41467-020-16338-x pmid: 32427850
25 A, Li A, Liu X, Du J Y, Chen M, Yin H Y, Hu N, Shrestha S D, Wu H Q, Wang Q W, Dou Z P, Liu J Q, Liu Y Z, Yang G P Ren. A chromosome-scale genome assembly of a diploid alfalfa, the progenitor of autotetraploid alfalfa. Horticulture Research, 2020, 7( 1): 194
https://doi.org/10.1038/s41438-020-00417-7 pmid: 33328470
26 R, Long F, Zhang Z, Zhang M, Li L, Chen X, Wang W, Liu T, Zhang L–X, Yu F, He X, Jiang X, Yang C, Yang Z, Wang J, Kang Q Yang. Genome assembly of alfalfa cultivar zhongmu-4 and identification of SNPs associated with agronomic traits. Genomics, Proteomics & Bioinformatics, 2022 [Published Online]
27 J, Cui Z, Lu T, Wang G, Chen S, Mostafa H, Ren S, Liu C, Fu L, Wang Y, Zhu J, Lu X, Chen Z, Wei B Jin. The genome of Medicago polymorpha provides insights into its edibility and nutritional value as a vegetable and forage legume. Horticulture Research, 2021, 8( 1): 47
https://doi.org/10.1038/s41438-021-00483-5 pmid: 33642569
28 M, Yin S, Zhang X, Du R G, Mateo W, Guo A, Li Z, Wang S, Wu J, Chen J, Liu G Ren. Genomic analysis of Medicago ruthenica provides insights into its tolerance to abiotic stress and demographic history. Molecular Ecology Resources, 2021, 21( 5): 1641–1657
https://doi.org/10.1111/1755-0998.13363 pmid: 33615703
29 T, Wang L, Ren C, Li D, Zhang X, Zhang G, Zhou D, Gao R, Chen Y, Chen Z, Wang F, Shi A D, Farmer Y, Li M, Zhou N D, Young W H Zhang. The genome of a wild Medicago species provides insights into the tolerant mechanisms of legume forage to environmental stress. BMC Biology, 2021, 19( 1): 96
https://doi.org/10.1186/s12915-021-01033-0 pmid: 33957908
30 Y, Yang M A, Saand L, Huang W B, Abdelaal J, Zhang Y, Wu J, Li M H, Sirohi F Wang. Applications of multi-omics technologies for crop improvement. Frontiers in Plant Science, 2021, 12 : 563953
https://doi.org/10.3389/fpls.2021.563953 pmid: 34539683
31 L G, Nemchinov J, Shao S, Grinstead O A Postnikova. Transcription factors in alfalfa ( Medicago sativa L.): genome-wide identification and a web resource center AlfalfaTFDB . In: Yu L X, Kole C, eds. The Alfalfa Genome. Compendium of Plant Genomes. Cham: Springer, 2021, 111–127
32 J, Li J, Essemine C, Shang H, Zhang X, Zhu J, Yu G, Chen M, Qu D Sun. Combined proteomics and metabolism analysis unravels prominent roles of antioxidant system in the prevention of alfalfa (Medicago sativa L.) against salt stress. International Journal of Molecular Sciences, 2020, 21( 3): 909
https://doi.org/10.3390/ijms21030909 pmid: 32019165
33 Y, Li X, Li J, Zhang D, Li L, Yan M, You J, Zhang X, Lei D, Chang X, Ji J, An M, Li S, Bai J Yan. Physiological and proteomic responses of contrasting alfalfa (Medicago sativa L.) varieties to high temperature stress. Frontiers in Plant Science, 2021, 12 : 753011
https://doi.org/10.3389/fpls.2021.753011 pmid: 34956258
34 Q, Ma X, Xu Y, Xie T, Huang W, Wang L, Zhao D Ma. Comparative metabolomic analysis of the metabolism pathways under drought stress in alfalfa leaves. Environmental and Experimental Botany, 2021, 183 : 104329
https://doi.org/10.1016/j.envexpbot.2020.104329
35 W, Fan G, Ge Y, Liu W, Wang L, Liu Y Jia. Proteomics integrated with metabolomics: analysis of the internal causes of nutrient changes in alfalfa at different growth stages. BMC Plant Biology, 2018, 18( 1): 78
https://doi.org/10.1186/s12870-018-1291-8 pmid: 29728056
36 I, Aranjuelo G, Molero G, Erice J C, Avice S Nogués. Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.). Journal of Experimental Botany, 2011, 62( 1): 111–123
https://doi.org/10.1093/jxb/erq249 pmid: 20797998
37 L, Ling Y, An D, Wang L, Tang B, Du Y, Shu Y, Bai C Guo. Proteomic analysis reveals responsive mechanisms for saline-alkali stress in alfalfa. Plant Physiology and Biochemistry, 2022, 170 : 146–159
https://doi.org/10.1016/j.plaphy.2021.12.003 pmid: 34891071
38 C, Fu T, Hernandez C, Zhou Z Y Wang. Alfalfa (Medicago sativa L.) . In: Wang K, ed. Agrobacterium Protocols. Methods in Molecular Biology, vol 1223. New York: Springer, 2015, 213–221
39 T W, Wolabu L, Cong J J, Park Q, Bao M, Chen J, Sun B, Xu Y, Ge M, Chai Z, Liu Z Y Wang. Development of a highly efficient multiplex genome editing system in outcrossing tetraploid alfalfa (Medicago sativa). Frontiers in Plant Science, 2020, 11 : 1063
https://doi.org/10.3389/fpls.2020.01063 pmid: 32765553
40 C Gao. Genome engineering for crop improvement and future agriculture. Cell, 2021, 184( 6): 1621–1635
https://doi.org/10.1016/j.cell.2021.01.005 pmid: 33581057
41 F, Zhu Q, Ye H, Chen J, Dong T Wang. Multigene editing reveals that MtCEP1/2/12 redundantly control lateral root and nodule number in Medicago truncatula. Journal of Experimental Botany, 2021, 72(10): 3661–3676
42 Q, Ye X, Meng H, Chen J, Wu L, Zheng C, Shen D, Guo Y, Zhao J, Liu Q, Xue J, Dong T Wang. Construction of genic male sterility system by CRISPR/Cas9 editing from model legume to alfalfa. Plant Biotechnology Journal, 2022, 20( 4): 613–615
https://doi.org/10.1111/pbi.13770 pmid: 34962045
43 L, Zheng J, Wen J, Liu X, Meng P, Liu N, Cao J, Dong T Wang. From model to alfalfa: gene editing to obtain semidwarf and prostrate growth habits. The Crop Journal, 2021 [Published Online]
44 X, Li B, Alarcón-Zúñiga J, Kang M H N, Tahir Q, Jiang Y, Wei R, Reyno J G, Robins E C Brummer. Mapping fall dormancy and winter injury in tetraploid alfalfa. Crop Science, 2015, 55( 5): 1995–2011
https://doi.org/10.2135/cropsci2014.12.0834
45 D J, Brouwer S H, Duke T C Osborn. Mapping genetic factors associated with winter hardiness, fail growth, and freezing injury in autotetraploid alfalfa. Crop Science, 2000, 40( 5): 1387–1396
https://doi.org/10.2135/cropsci2000.4051387x
46 E C, Brummer M M, Shah D Luth. Reexamining the relationship between fall dormancy and winter hardiness in alfalfa. Crop Science, 2000, 40( 4): 971–977
https://doi.org/10.2135/cropsci2000.404971x
47 Z, Wang X, Wang H, Zhang L, Ma H, Zhao C S, Jones J, Chen G Liu. A genome-wide association study approach to the identification of candidate genes underlying agronomic traits in alfalfa (Medicago sativa L.). Plant Biotechnology Journal, 2020, 18( 3): 611–613
https://doi.org/10.1111/pbi.13251 pmid: 31487419
48 S, Zhang C Wang. Transcriptome profiling of gene expression in fall dormant and nondormant alfalfa. Genomics Data, 2014, 2 : 282–284
https://doi.org/10.1016/j.gdata.2014.08.008 pmid: 26484109
49 S, Zhang Y, Shi N, Cheng H, Du W, Fan C Wang. De novo characterization of fall dormant and nondormant alfalfa (Medicago sativa L.) leaf transcriptome and identification of candidate genes related to fall dormancy. PLoS One, 2015, 10( 3): e0122170
https://doi.org/10.1371/journal.pone.0122170 pmid: 25799491
50 H, Du Y, Shi D, Li W, Fan G, Wang C Wang. Screening and identification of key genes regulating fall dormancy in alfalfa leaves. PLoS One, 2017, 12( 12): e0188964
https://doi.org/10.1371/journal.pone.0188964 pmid: 29211806
51 L X, Yu C A, Medina M Peel. Genetic and genomic assessments for improving drought resilience in alfalfa. In: Yu L X, Kole C, eds. The Alfalfa Genome. Compendium of Plant Genomes. Cham: Springer, 2021, 235–253
52 Z, Miao W, Xu D, Li X, Hu J, Liu R, Zhang Z, Tong J, Dong Z, Su L, Zhang M, Sun W, Li Z, Du S, Hu T Wang. De novo transcriptome analysis of Medicago falcata reveals novel insights about the mechanisms underlying abiotic stress-responsive pathway. BMC Genomics, 2015, 16( 1): 818
https://doi.org/10.1186/s12864-015-2019-x pmid: 26481731
53 W, Liu Z, Zhang S, Chen L, Ma H, Wang R, Dong Y, Wang Z Liu. Global transcriptome profiling analysis reveals insight into saliva-responsive genes in alfalfa. Plant Cell Reports, 2016, 35( 3): 561–571
https://doi.org/10.1007/s00299-015-1903-9 pmid: 26645698
54 D, Li Y, Zhang X, Hu X, Shen L, Ma Z, Su T, Wang J Dong. Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses. BMC Plant Biology, 2011, 11( 1): 109
https://doi.org/10.1186/1471-2229-11-109 pmid: 21718548
55 M, Duan R, Zhang F, Zhu Z, Zhang L, Gou J, Wen J, Dong T Wang. A lipid-anchored NAC transcription factor is translocated into the nucleus and activates glyoxalase I expression during drought stress. Plant Cell, 2017, 29( 7): 1748–1772
https://doi.org/10.1105/tpc.17.00044 pmid: 28684428
56 C, Xie R, Zhang Y, Qu Z, Miao Y, Zhang X, Shen T, Wang J Dong. Overexpression of MtCAS31 enhances drought tolerance in transgenic Arabidopsis by reducing stomatal density. New Phytologist, 2012, 195( 1): 124–135
https://doi.org/10.1111/j.1469-8137.2012.04136.x pmid: 22510066
57 X, Li Q, Liu H, Feng J, Deng R, Zhang J, Wen J, Dong T Wang. Dehydrin MtCAS31 promotes autophagic degradation under drought stress. Autophagy, 2020, 16( 5): 862–877
https://doi.org/10.1080/15548627.2019.1643656 pmid: 31362589
58 J, Bacenetti D, Lovarelli D, Tedesco R, Pretolani V Ferrante. Environmental impact assessment of alfalfa (Medicago sativa L.) hay production. Science of the Total Environment, 2018, 635 : 551–558
https://doi.org/10.1016/j.scitotenv.2018.04.161 pmid: 29679827
59 S, Roy W, Liu R S, Nandety A, Crook K S, Mysore C I, Pislariu J, Frugoli R, Dickstein M K Udvardi. Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. Plant Cell, 2020, 32( 1): 15–41
https://doi.org/10.1105/tpc.19.00279 pmid: 31649123
60 B, Ren X, Wang J, Duan J Ma. Rhizobial tRNA-derived small RNAs are signal molecules regulating plant nodulation. Science, 2019, 365( 6456): 919–922
https://doi.org/10.1126/science.aav8907 pmid: 31346137
61 Q, Cai L, Qiao M, Wang B, He F M, Lin J, Palmquist S D, Huang H Jin. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science, 2018, 360( 6393): 1126–1129
https://doi.org/10.1126/science.aar4142 pmid: 29773668
62 G E D, Oldroyd J D, Murray P S, Poole J A Downie. The rules of engagement in the legume-rhizobial symbiosis. Annual Review of Genetics, 2011, 45( 1): 119–144
https://doi.org/10.1146/annurev-genet-110410-132549 pmid: 21838550
63 C W, Liu A, Breakspear N, Stacey K, Findlay J, Nakashima K, Ramakrishnan M, Liu F, Xie G, Endre Carvalho-Niebel F, de G E D, Oldroyd M K, Udvardi J, Fournier J D Murray. A protein complex required for polar growth of rhizobial infection threads. Nature Communications, 2019, 10( 1): 2848
https://doi.org/10.1038/s41467-019-10029-y pmid: 31253759
64 P, Liang C, Schmitz B, Lace F A, Ditengou C, Su E, Schulze J, Knerr R, Grosse J, Keller C, Libourel P M, Delaux T Ott. Formin-mediated bridging of cell wall, plasma membrane, and cytoskeleton in symbiotic infections of Medicago truncatula. Current Biology, 2021, 31(12): 2712–2719.e5
65 X, Zhang L, Han Q, Wang C, Zhang Y, Yu J, Tian Z Kong. The host actin cytoskeleton channels rhizobia release and facilitates symbiosome accommodation during nodulation in Medicago truncatula. New Phytologist, 2019, 221(2): 1049–1059
66 W, Dong Y, Zhu H, Chang C, Wang J, Yang J, Shi J, Gao W, Yang L, Lan Y, Wang X, Zhang H, Dai Y, Miao L, Xu Z, He C, Song S, Wu D, Wang N, Yu E Wang. An SHR-SCR module specifies legume cortical cell fate to enable nodulation. Nature, 2021, 589( 7843): 586–590
https://doi.org/10.1038/s41586-020-3016-z pmid: 33299183
67 F, Zhu J, Deng H, Chen P, Liu L, Zheng Q, Ye R, Li M, Brault J, Wen F, Frugier J, Dong T Wang. A CEP peptide receptor-like kinase regulates auxin biosynthesis and ethylene signaling to coordinate root growth and symbiotic nodulation in Medicago truncatula. Plant Cell, 2020, 32(9): 2855–2877
68 J, Feng T, Lee K, Schiessl G E D Oldroyd. Processing of NODULE INCEPTION controls the transition to nitrogen fixation in root nodules. Science, 2021, 374( 6567): 629–632
https://doi.org/10.1126/science.abg2804 pmid: 34709900
69 M, Udvardi P S Poole. Transport and metabolism in legume-rhizobia symbioses. Annual Review of Plant Biology, 2013, 64( 1): 781–805
https://doi.org/10.1146/annurev-arplant-050312-120235 pmid: 23451778
70 S, Jiang M F, Jardinaud J, Gao Y, Pecrix J, Wen K, Mysore P, Xu C, Sanchez-Canizares Y, Ruan Q, Li M, Zhu F, Li E, Wang P S, Poole P, Gamas J D Murray. NIN-like protein transcription factors regulate leghemoglobin genes in legume nodules. Science, 2021, 374( 6567): 625–628
https://doi.org/10.1126/science.abg5945 pmid: 34709882
71 S, Shi L, Nan K F Smith. The current status, problems, and prospects of alfalfa (Medicago sativa L.) breeding in China. Agronomy, 2017, 7( 1): 1
https://doi.org/10.3390/agronomy7010001
72 P, Annicchiarico N, Nazzicari X, Li Y, Wei L, Pecetti E C Brummer. Accuracy of genomic selection for alfalfa biomass yield in different reference populations. BMC Genomics, 2015, 16( 1): 1020
https://doi.org/10.1186/s12864-015-2212-y pmid: 26626170
73 L X, Yu P, Zheng S, Bhamidimarri X P, Liu D Main. The impact of genotyping-by-sequencing pipelines on SNP discovery and identification of markers associated with verticillium wilt resistance in autotetraploid alfalfa (Medicago sativa L.). Frontiers in Plant Science, 2017, 8 : 89
https://doi.org/10.3389/fpls.2017.00089 pmid: 28223988
74 S, Lin C A, Medina B, Boge J, Hu S, Fransen S, Norberg L X Yu. Identification of genetic loci associated with forage quality in response to water deficit in autotetraploid alfalfa (Medicago sativa L.). BMC Plant Biology, 2020, 20( 1): 303
https://doi.org/10.1186/s12870-020-02520-2 pmid: 32611315
75 C A, Medina C, Hawkins X P, Liu M, Peel L X Yu. Genome-wide association and prediction of traits related to salt tolerance in autotetraploid alfalfa (Medicago sativa L.). International Journal of Molecular Sciences, 2020, 21( 9): 3361
https://doi.org/10.3390/ijms21093361 pmid: 32397526
76 C A, Medina H, Kaur I, Ray L X Yu. Strategies to increase prediction accuracy in genomic selection of complex traits in alfalfa (Medicago sativa L.). Cells, 2021, 10( 12): 3372
https://doi.org/10.3390/cells10123372 pmid: 34943880
77 F D A Pettem. The selection of male-sterile lines in alfalfa. B. The witches’ broom disease of alfalfa in British Columbia. Dissertation for the Master’s Degree. Vancouver: University of British Columbia, 1951
78 W H, Davis I M Greenblatt. Cytoplasmic male sterility in alfalfa. Journal of Heredity, 1967, 58( 6): 301–305
https://doi.org/10.1093/oxfordjournals.jhered.a107621
79 N R, Bradner W R Childers. Cytoplasmic male sterility in alfalfa. Canadian Journal of Plant Science, 1968, 48( 1): 111–112
https://doi.org/10.4141/cjps68-020
80 M W, Pedersen R E Stucker. Evidence of cytoplasmic male sterility in alfalfa. Crop Science, 1969, 9( 6): 767–770
https://doi.org/10.2135/cropsci1969.0011183X000900060029x
81 D K, Barnes E T, Bingham J D, Axtell W H Davis. The flower, sterility mechanisms, and pollination control. In: Hanson C H, ed. Alfalfa Science and Technology. Madison: American Society of Agronomy, 1972, 123–141
82 D R, Viands P, Sun D K Barnes. Pollination control: mechanical and sterility. In: Hanson A A, Barnes D K, Hill R R, eds. Alfalfa and alfalfa improvement. Madison, WI: ASA, CSSA, SSSA, 1988, 931–960
83 A, Parajuli L X, Yu M, Peel D, See S, Wagner S, Norberg Z Zhang. Self-incompatibility, inbreeding depression, and potential to develop inbred lines in alfalfa. In: Yu L X, Kole C, eds. The Alfalfa Genome. Compendium of Plant Genomes. Cham: Springer, 2021, 255–269
84 N, Wang X, Xia T, Jiang L, Li P, Zhang L, Niu H, Cheng K, Wang H Lin. In planta haploid induction by genome editing of DMP in the model legume Medicago truncatula. Plant Biotechnology Journal, 2022, 20(1): 22–24
85 Z, Tong H, Li R, Zhang L, Ma J, Dong T Wang. Co-downregulation of the hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyl transferase and coumarate 3-hydroxylase significantly increases cellulose content in transgenic alfalfa (Medicago sativa L.). Plant Science, 2015, 239 : 230–237
https://doi.org/10.1016/j.plantsci.2015.08.005 pmid: 26398807
86 Z, Tong C, Xie L, Ma L, Liu Y, Jin J, Dong T Wang. Co-expression of bacterial aspartate kinase and adenylylsulfate reductase genes substantially increases sulfur amino acid levels in transgenic alfalfa (Medicago sativa L.). PLoS One, 2014, 9( 2): e88310
https://doi.org/10.1371/journal.pone.0088310 pmid: 24520364
87 C M Donald. The breeding of crop ideotypes. Euphytica, 1968, 17( 3): 385–403
https://doi.org/10.1007/BF00056241
88 C, Grieder K, Kempf F X Schubiger. Breeding alfalfa (Medicago sativa L.) in mixture with grasses. Sustainability, 2021, 13( 16): 8929
https://doi.org/10.3390/su13168929
89 Y, Peng Z, Li T, Sun F, Zhang Q, Wu M, Du T Sheng. Modeling long-term water use and economic returns to optimize alfalfa-corn rotation in the corn belt of northeast China. Field Crops Research, 2022, 276 : 108379
https://doi.org/10.1016/j.fcr.2021.108379
90 V, Audu F, Rasche L M D, Mårtensson C Emmerling. Perennial cereal grain cultivation: implication on soil organic matter and related soil microbial parameters. Applied Soil Ecology, 2022, 174 : 104414
https://doi.org/10.1016/j.apsoil.2022.104414
91 R, Xu H, Zhao G, Liu Y, Li S, Li Y, Zhang N, Liu L Ma. Alfalfa and silage maize intercropping provides comparable productivity and profitability with lower environmental impacts than wheat-maize system in the North China plain. Agricultural Systems, 2022, 195 : 103305
https://doi.org/10.1016/j.agsy.2021.103305
92 Q, Wang D, Zhang X, Zhou E, Mak-Mensah X, Zhao W, Zhao X, Wang D, Stellmach Q, Liu X, Li G, Li H, Wang K Zhang. Optimum planting configuration for alfalfa production with ridge-furrow rainwater harvesting in a semiarid region of China. Agricultural Water Management, 2022, 266 : 107594
https://doi.org/10.1016/j.agwat.2022.107594
93 M, Yin Y, Ma Y, Kang Q, Jia G, Qi J, Wang C, Yang J Yu. Optimized farmland mulching improves alfalfa yield and water use efficiency based on meta-analysis and regression analysis. Agricultural Water Management, 2022, 267 : 107617
https://doi.org/10.1016/j.agwat.2022.107617
94 S L, Graham J, Laubach J E, Hunt P L, Mudge J, Nunez G N D, Rogers R P, Buxton S, Carrick D Whitehead. Irrigation and grazing management affect leaching losses and soil nitrogen balance of lucerne. Agricultural Water Management, 2022, 259 : 107233
https://doi.org/10.1016/j.agwat.2021.107233
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed