1. Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China 2. Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
● Gaseous N emissions from orchards, vegetables and tea plantations (OVT) are reviewed.
● Gaseous N emissions from OVT are greater in China than the rest of the world.
● OVT are hotspots for gaseous N emissions from the agricultural sector in China.
Nitrogen fertilizer application has accelerated the agricultural soil N cycle while ensuring food security. Gaseous reactive N emissions from orchards, vegetables and tea plantations (OVT) are less understood than those from cereal crops. This paper presents a compilation of data on soil ammonia, nitrous oxide, and nitric oxide emissions from 1454 OVT systems at 184 unique experimental locations worldwide aiming to investigate their emission characteristics, emission factors (EF), and contribution to total farmland emissions. NH3 and N2O emissions from orchards and N2O and NO emissions from vegetable production were significantly higher in China than in the rest of the world, regardless of fertilizer application, while N2O emissions from tea plantations were lower than for vegetables. The EF of NH3 for vegetables was close to the global mean value with urea application but significantly higher than that of orchards. The EF of N2O in orchards and vegetables was comparable to the global median value, while in tea plantations, the value was 2.3 times higher than the global median value. Current estimates suggest that direct emissions of NH3, N2O, and NO from OVT systems are equivalent to approximately a quarter, two thirds and a half of the total farmland in China, respectively. Future research needs to strengthen observational field studies in establishing standard sampling methods for gaseous N emissions and implementing knowledge-based management measures to help achieve the green development of agriculture.
D, Fowler M, Coyle U, Skiba M A, Sutton J N, Cape S, Reis L J, Sheppard A, Jenkins B, Grizzetti J N, Galloway P, Vitousek A, Leach A F, Bouwman K, Butterbach-Bahl F, Dentener D, Stevenson M, Amann M Voss . The global nitrogen cycle in the twenty-first century. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 2013, 368(1621): 20130164 https://doi.org/10.1098/rstb.2013.0164
pmid: 23713126
2
Intergovernmental Panel on Climate Change (IPCC). Carbon and Other Biogeochemical Cycles. In: Climate Change 2013—The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2014, 465–570
3
A F, Bouwman A H W, Beusen J, Griffioen Groenigen J W, Van M M, Hefting O, Oenema Puijenbroek P J T M, Van S, Seitzinger C P, Slomp E Stehfest . Global trends and uncertainties in terrestrial denitrification and N2O emissions. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 2013, 368(1621): 20130112 https://doi.org/10.1098/rstb.2013.0112
pmid: 23713114
4
J N, Galloway A M, Leach A, Bleeker J W Erisman . A chronology of human understanding of the nitrogen cycle. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 2013, 368(1621): 20130120 https://doi.org/10.1098/rstb.2013.0120
pmid: 23713118
5
J N, Galloway A R, Townsend J W, Erisman M, Bekunda Z, Cai J R, Freney L A, Martinelli S P, Seitzinger M A Sutton . Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 2008, 320(5878): 889–892 https://doi.org/10.1126/science.1136674
pmid: 18487183
6
Z, Zhu Q, Wen J R Freney . Nitrogen in Soils of China. Dordrecht: Springer, 1997
7
B, Gu X, Ju J, Chang Y, Ge P M Vitousek . Integrated reactive nitrogen budgets and future trends in China. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(28): 8792–8797 https://doi.org/10.1073/pnas.1510211112
pmid: 26124118
8
J W, Erisman J, Galloway S, Seitzinger A, Bleeker K Butterbach-Bahl . Reactive nitrogen in the environment and its effect on climate change. Current Opinion in Environmental Sustainability, 2011, 3(5): 281–290 https://doi.org/10.1016/j.cosust.2011.08.012
9
Panel on Climate Change (IPCC) Intergovernmental . Climate Change 2013—The Physical Science Basis. Cambridge University Press, 2014
10
E A Davidson . The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nature Geoscience, 2009, 2(9): 659–662 https://doi.org/10.1038/ngeo608
11
Firestone M K, Davidson E A. Microbiologial Basis of NO and N2O production and consumption in soil. John Wiley and Sons, 1989, 7–21
12
K, Butterbach-Bahl E M, Baggs M, Dannenmann R, Kiese S Zechmeister-Boltenstern . Nitrous oxide emissions from soils: how well do we understand the processes and their controls. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 2013, 368(1621): 20130122 https://doi.org/10.1098/rstb.2013.0122
pmid: 23713120
13
H, Tian R, Xu J G, Canadell R L, Thompson W, Winiwarter P, Suntharalingam E A, Davidson P, Ciais R B, Jackson G, Janssens-Maenhout M J, Prather P, Regnier N, Pan S, Pan G P, Peters H, Shi F N, Tubiello S, Zaehle F, Zhou A, Arneth G, Battaglia S, Berthet L, Bopp A F, Bouwman E T, Buitenhuis J, Chang M P, Chipperfield S R S, Dangal E, Dlugokencky J W, Elkins B D, Eyre B, Fu B, Hall A, Ito F, Joos P B, Krummel A, Landolfi G G, Laruelle R, Lauerwald W, Li S, Lienert T, Maavara M, MacLeod D B, Millet S, Olin P K, Patra R G, Prinn P A, Raymond D J, Ruiz der Werf G R, van N, Vuichard J, Wang R F, Weiss K C, Wells C, Wilson J, Yang Y Yao . A comprehensive quantification of global nitrous oxide sources and sinks. Nature, 2020, 586(7828): 248–256 https://doi.org/10.1038/s41586-020-2780-0
pmid: 33028999
14
K, Ni W, Liao X, Yi S, Niu L, Ma Y, Shi Q, Zhang M, Liu J, Ma J Ruan . Fertilization status and reduction potential in tea gardens of China. Journal of Plant Nutrition and Fertilizers, 2019, 25(3): 421−432 (in Chinese)
15
W F, Zhang Z X, Dou P, He X T, Ju D, Powlson D, Chadwick D, Norse Y L, Lu Y, Zhang L, Wu X P, Chen K G, Cassman F S Zhang . New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(21): 8375–8380 https://doi.org/10.1073/pnas.1210447110
pmid: 23671096
16
X, Chen Z, Cui M, Fan P, Vitousek M, Zhao W, Ma Z, Wang W, Zhang X, Yan J, Yang X, Deng Q, Gao Q, Zhang S, Guo J, Ren S, Li Y, Ye Z, Wang J, Huang Q, Tang Y, Sun X, Peng J, Zhang M, He Y, Zhu J, Xue G, Wang L, Wu N, An L, Wu L, Ma W, Zhang F Zhang . Producing more grain with lower environmental costs. Nature, 2014, 514(7523): 486–489 https://doi.org/10.1038/nature13609
pmid: 25186728
17
S, Liu F, Lin S, Wu C, Ji Y, Sun Y, Jin S, Li Z, Li J Zou . A meta-analysis of fertilizer-induced soil NO and combined NO+N2O emissions. Global Change Biology, 2017, 23(6): 2520–2532 https://doi.org/10.1111/gcb.13485
pmid: 27570182
18
Y, Wang Z, Yao X, Zheng L, Subramaniam K Butterbach-Bahl . A synthesis of nitric oxide emissions across global fertilized croplands from crop-specific emission factors. Global Change Biology, 2022, 28(14): 4395–4408 https://doi.org/10.1111/gcb.16193
pmid: 35403777
19
Y, Geng J, Wang Z, Sun C, Ji M, Huang Y, Zhang P, Xu S, Li M, Pawlett J Zou . Soil N-oxide emissions decrease from intensive greenhouse vegetable fields by substituting synthetic N fertilizer with organic and bio-organic fertilizers. Geoderma, 2021, 383: 114730 https://doi.org/10.1016/j.geoderma.2020.114730
20
P, Xu Z, Li J, Wang J Zou . Fertilizer-induced nitrous oxide emissions from global orchards and its estimate of China. Agriculture, Ecosystems & Environment, 2022, 328: 107854 https://doi.org/10.1016/j.agee.2022.107854
21
Z, Han J, Wang P, Xu Z, Sun C, Ji S, Li S, Wu S, Liu J Zou . Greater nitrous and nitric oxide emissions from the soil between rows than under the canopy in subtropical tea plantations. Geoderma, 2021, 398: 115105 https://doi.org/10.1016/j.geoderma.2021.115105
22
C, Fan H, Chen B, Li Z Xiong . Biochar reduces yield-scaled emissions of reactive nitrogen gases from vegetable soils across China. Biogeosciences, 2017, 14(11): 2851–2863 https://doi.org/10.5194/bg-14-2851-2017
23
C, Fan B, Li Z Xiong . Nitrification inhibitors mitigated reactive gaseous nitrogen intensity in intensive vegetable soils from China. Science of the Total Environment, 2018, 612: 480–489 https://doi.org/10.1016/j.scitotenv.2017.08.159
pmid: 28865265
24
Z, Han J, Wang P, Xu Z, Li S, Liu J Zou . Differential responses of soil nitrogen-oxide emissions to organic substitution for synthetic fertilizer and biochar amendment in a subtropical tea plantation. Global Change Biology. Bioenergy, 2021, 13(8): 1260–1274 https://doi.org/10.1111/gcbb.12842
25
C, Zhao B, Gao L, Wang W, Huang S, Xu S Cui . Spatial patterns of net greenhouse gas balance and intensity in Chinese orchard system. Science of the Total Environment, 2021, 779: 146250 https://doi.org/10.1016/j.scitotenv.2021.146250
pmid: 33744568
26
C, Wang K, Cheng C, Ren H, Liu J, Sun S, Reis S, Yin J, Xu B Gu . An empirical model to estimate ammonia emission from cropland fertilization in China. Environmental Pollution, 2021, 288: 117982 https://doi.org/10.1016/j.envpol.2021.117982
pmid: 34426229
27
J, Wang P, Smith K, Hergoualc’h J Zou . Direct N2O emissions from global tea plantations and mitigation potential by climate-smart practices. Resources, Conservation and Recycling, 2022, 185: 106501 https://doi.org/10.1016/j.resconrec.2022.106501
28
Bureau of Statistics of China (NBSC) National . China Statistical Yearbook 1981–2021. Beijing, China: China Statistics Press, 2021 (in Chinese)
29
Core Team R . R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, 2018
30
R, Ma J, Zou Z, Han K, Yu S, Wu Z, Li S, Liu S, Niu W R, Horwath X Zhu-Barker . Global soil-derived ammonia emissions from agricultural nitrogen fertilizer application: a refinement based on regional and crop-specific emission factors. Global Change Biology, 2021, 27(4): 855–867 https://doi.org/10.1111/gcb.15437
pmid: 33155724
31
W, Kuang X, Gao M, Tenuta F Zeng . A global meta-analysis of nitrous oxide emission from drip-irrigated cropping system. Global Change Biology, 2021, 27(14): 3244–3256 https://doi.org/10.1111/gcb.15636
pmid: 33931928
32
P, Yan L, Wu D, Wang J, Fu C, Shen X, Li L, Zhang L, Zhang L, Fan H Wenyan . Soil acidification in Chinese tea plantations. Science of the Total Environment, 2020, 715: 136963 https://doi.org/10.1016/j.scitotenv.2020.136963
pmid: 32014781
33
H, Akiyama X, Yan K Yagi . Estimations of emission factors for fertilizer-induced direct N2O emissions from agricultural soils in Japan: summary of available data. Soil Science and Plant Nutrition, 2006, 52(6): 774–787 https://doi.org/10.1111/j.1747-0765.2006.00097.x
34
S, Medinets U, Skiba H, Rennenberg K Butterbach-Bahl . A review of soil NO transformation: associated processes and possible physiological significance on organisms. Soil Biology & Biochemistry, 2015, 80: 92–117 https://doi.org/10.1016/j.soilbio.2014.09.025
35
R, Ma K, Yu S, Xiao S, Liu P, Ciais J Zou . Data-driven estimates of fertilizer-induced soil NH3, NO and N2 O emissions from croplands in China and their climate change impacts. Global Change Biology, 2022, 28(3): 1008–1022 https://doi.org/10.1111/gcb.15975
pmid: 34738298
36
H, Zhao P, Lakshmanan X, Wang H, Xiong L, Yang B, Liu X, Shi X, Chen J, Wang Y, Zhang F Zhang . Global reactive nitrogen loss in orchard systems: a review. Science of the Total Environment, 2022, 821: 153462 https://doi.org/10.1016/j.scitotenv.2022.153462
pmid: 35093357
37
J, Gu H, Nie H, Guo H, Xu T Gunnathorn . Nitrous oxide emissions from fruit orchards: a review. Atmospheric Environment, 2019, 201: 166–172 https://doi.org/10.1016/j.atmosenv.2018.12.046
38
J, Wang Z, Xiong X Yan . Fertilizer-induced emission factors and background emissions of N2O from vegetable fields in China. Atmospheric Environment, 2011, 45(38): 6923–6929 https://doi.org/10.1016/j.atmosenv.2011.09.045
39
Q, Liu Y, Qin J, Zou Y, Guo Z Gao . Annual nitrous oxide emissions from open-air and greenhouse vegetable cropping systems in China. Plant and Soil, 2013, 370(1–2): 223–233 https://doi.org/10.1007/s11104-013-1622-3
40
G, Aliyu J, Luo H J, Di S, Lindsey D, Liu J, Yuan Z, Chen Y, Lin T, He M, Zaman W Ding . Nitrous oxide emissions from China’s croplands based on regional and crop-specific emission factors deviate from IPCC 2006 estimates. Science of the Total Environment, 2019, 669: 547–558 https://doi.org/10.1016/j.scitotenv.2019.03.142
pmid: 30889444
41
X, Wang C, Zou X, Gao X, Guan W, Zhang Y, Zhang X, Shi X Chen . Nitrous oxide emissions in Chinese vegetable systems: A meta-analysis. Environmental Pollution, 2018, 239: 375–383 https://doi.org/10.1016/j.envpol.2018.03.090
pmid: 29674216
42
J, Gu Y, Wu Z, Tian H Xu . Nitrogen use efficiency, crop water productivity and nitrous oxide emissions from Chinese greenhouse vegetables: a meta-analysis. Science of the Total Environment, 2020, 743: 140696 https://doi.org/10.1016/j.scitotenv.2020.140696
pmid: 32653715
43
J S, Gerber K M, Carlson D, Makowski N D, Mueller de Cortazar-Atauri I, Garcia P, Havlík M, Herrero M, Launay C S, O’Connell P, Smith P C West . Spatially explicit estimates of N2 O emissions from croplands suggest climate mitigation opportunities from improved fertilizer management. Global Change Biology, 2016, 22(10): 3383–3394 https://doi.org/10.1111/gcb.13341
pmid: 27185532
44
Rashti M, Rezaei W, Wang P, Moody C, Chen H Ghadiri . Fertiliser-induced nitrous oxide emissions from vegetable production in the world and the regulating factors: a review. Atmospheric Environment, 2015, 112: 225–233 https://doi.org/10.1016/j.atmosenv.2015.04.036
45
T, Yang F, Li X, Zhou C C, Xu J, Feng F Fang . Impact of nitrogen fertilizer, greenhouse, and crop species on yield-scaled nitrous oxide emission from vegetable crops: a meta-analysis. Ecological Indicators, 2019, 105: 717–726 https://doi.org/10.1016/j.ecolind.2019.02.001
46
Y, Li X, Zheng X, Fu Y Wu . Is green tea still ‘green’. Geo: Geography and Environment, 2016, 3(2): e00021 https://doi.org/10.1002/geo2.21
47
Y, Wang Z, Yao Z, Pan R, Wang G, Yan C, Liu Y, Su X, Zheng K Butterbach-Bahl . Tea-planted soils as global hotspots for N2O emissions from croplands. Environmental Research Letters, 2020, 15(10): 104018 https://doi.org/10.1088/1748-9326/aba5b2
48
K Hergoualc’h, H Akiyama, M Bernoux, N Chirinda, A del Prado, Å Kasimir, J D MacDonald, S M Ogle, K Regina, T J N van der Weerden. . O2 Emissions from managed soils, and CO2 emissions from lime and urea application. In: Calvo Buendia E, Tanabe K, Kranjc A, Baasansuren J, Fukuda M, Ngarize S, Osako A, Pyrozhenko Y, Shermanau P, Federici S, eds. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. IPCC, 2019, 1–48
49
K, Hergoualc’h N, Mueller M, Bernoux Ä, Kasimir der Weerden T J, van S M Ogle . Improved accuracy and reduced uncertainty in greenhouse gas inventories by refining the IPCC emission factor for direct N2O emissions from nitrogen inputs to managed soils. Global Change Biology, 2021, 27(24): 6536–6550 https://doi.org/10.1111/gcb.15884
pmid: 34523777
50
Q, Yue H, Wu J, Sun K, Cheng P, Smith J, Hillier X, Xu G Pan . Deriving emission factors and estimating direct nitrous oxide emissions for crop cultivation in China. Environmental Science & Technology, 2019, 53(17): 10246–10257 https://doi.org/10.1021/acs.est.9b01285
pmid: 3136250
51
X, Zheng S, Han Y, Huang Y, Wang M Wang . Re-quantifying the emission factors based on field measurements and estimating the direct N2O emission from Chinese croplands. Global Biogeochemical Cycles, 2004, 18(2): GB2018 https://doi.org/10.1029/2003GB002167