Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

邮发代号 80-970

2019 Impact Factor: 1.275

Frontiers of Computer Science  2014, Vol. 8 Issue (2): 243-254   https://doi.org/10.1007/s11704-014-2328-2
  本期目录
Novel infrared and visible image fusion method based on independent component analysis
Yin LU(), Fuxiang WANG, Xiaoyan LUO, Feng LIU
National Key Laboratory of CNS/ATM, School of Electronics and Information Engineering, Beihang University, Beijing 100191, China
 全文: PDF(777 KB)  
Abstract

The goal of infrared (IR) and visible image fusion is for the fused image to contain IR object features from the IR image and retain the visual details provided by the visible image. The disadvantage of traditional fusion method based on independent component analysis (ICA) is that the primary feature information that describes the IR objects and the secondary feature information in the IR image are fused into the fused image. Secondary feature information can depress the visual effect of the fused image. A novel ICA-based IR and visible image fusion scheme is proposed in this paper. ICA is employed to extract features from the infrared image, and then the primary and secondary features are distinguished by the kurtosis information of the ICA base coefficients. The secondary features of the IR image are discarded during fusion. The fused image is obtained by fusing primary features into the visible image. Experimental results show that the proposed method can provide better perception effect.

Key wordsimage fusion    independent component analysis (ICA)    feature extraction    kurtosis
收稿日期: 2012-10-29      出版日期: 2014-06-24
Corresponding Author(s): Yin LU   
 引用本文:   
. [J]. Frontiers of Computer Science, 2014, 8(2): 243-254.
Yin LU, Fuxiang WANG, Xiaoyan LUO, Feng LIU. Novel infrared and visible image fusion method based on independent component analysis. Front. Comput. Sci., 2014, 8(2): 243-254.
 链接本文:  
https://academic.hep.com.cn/fcs/CN/10.1007/s11704-014-2328-2
https://academic.hep.com.cn/fcs/CN/Y2014/V8/I2/243
1 A A Goshtasby, S Nikolov. Image fusion: Advances in the state of the art. Information Fusion, 2008, 8(2): 114−118
https://doi.org/10.1016/j.inffus.2006.04.001
2 A Mahmood, PM Tudor, W Oxford, R Hansford, J D B Nelson, N G Kingsbury, A Katartzis, M Petrou, N Mitianoudis, T Stathaki, A Achim, D Bull, N Canagarajah, S Nikolov, A Loza, and N Cvejic. Applied multi-dimensional fusion. The Computer Journal, 2007, 50(6): 660−673
https://doi.org/10.1093/comjnl/bxm069
3 A Sinha, H M Chen, D G Danu, T Kirubarajan, M Farooq. Estimation and decision fusion: a survey. Neurocomputing, 2008, 71(13−15): 2650−2656
https://doi.org/10.1016/j.neucom.2007.06.016
4 G Piella. A general framework for multiresolution image fusion: from pixels to regions. Information Fusion, 2003, 4: 259−280
https://doi.org/10.1016/S1566-2535(03)00046-0
5 K Liu, L Guo, H H Li, J S Chen. Fusion of infrared and visible light images based on region segmentation. Journal of Aeronautics, 2009, 22(1): 75−80
https://doi.org/10.1016/S1000-9361(08)60071-0
6 X Q Zhang, Z S Gao, Y H Zhao. Dynamic infrared and visible image sequence fusion based on DT-CWT using GGD. In: Proceedings of the 2008 International Conference on Computer Secience and Information Technoogy. 2008, 875−878
7 MS Bartlett, H Martin, T J Sejnowski. Face image analysis by unsupervised learning and redundancy reduction. PhD Dissertation. La Jolla: University of California San Diego and the Salk Institute, 1998
8 A Hyväriene, J Karhunen, E Oja. Independent Component Analysis. London: John Wiley and Sons, 2001
https://doi.org/10.1002/0471221317
9 O W Kwon, T W Lee. Phoneme recognition using ICA-based feature extraction and transformation. Signal Processing, 2004, 84: 1005−1019
https://doi.org/10.1016/j.sigpro.2004.03.004
10 G Dorffner, H Bischof, K Hornik. Feature extraction using ICA. Lecture Notes in Computer Science, 2001, 2130: 568−573
https://doi.org/10.1007/3-540-44668-0
11 L P Zhang, X Huang. Object-oriented subspace analysis for airborne hyperspectral remote sensing imagery. Neurocomputing, 2010, 77(4−6): 727−936
12 A Hyvärinen, E Oja. Independent component analysis: algorithms and applications. Neural Networks, 2000, 13: 411−430
https://doi.org/10.1016/S0893-6080(00)00026-5
13 A Hyvärinen, E Oja, P Hoyer, J Hurri. Image feature extraction by sparse coding and independent component analysis. In: Proceedings of the 14th International Conference on Pattern Recognition. 1998, 2: 1268−1273
14 N Kwak, C H Choi, N Ahuja. Face recogniton using feature extraction based on Independent Component Analysis. Image Processing, 2002, 2: 337−340
15 N Mitianoudis, T Stathaki. Pixel-based and Region-based image fusion schemes using ICA bases. Information Fusion, 2007, 8(2): 131−142
https://doi.org/10.1016/j.inffus.2005.09.001
16 N Mitianoudis, T Stathaki. Image fusion schemes using ICA bases. London: Communications and Signal Processing Group, 2008
17 N Mitianoudis, T Stathaki. Optimal contrast correction for ICA-based fusion of multimodal images. IEEE Sensors Journal, 2008, 8(12): 2016−2016
https://doi.org/10.1109/JSEN.2008.2007678
18 N Mitianoudis, T Stathaki. Adaptive image fusion using ICA bases. In: Proceedings of the 2006 International Conference on Acoustics, Speech and Signal Processing. 2006, 829−832
https://doi.org/10.1109/ICASSP.2006.1660471
19 N Cvejic, D Bull, N Canagarajah. Region-based multimodal image fusion using ICA bases. IEEE Sensors Journal, 2007, 7(5): 743−751
https://doi.org/10.1109/JSEN.2007.894926
20 F R Chen, F Qin, G X Peng, S Q Chen. Fusion of remote sensing images using improved ICA mergers based on wavelet decomposition. Procedia Engineering, 2012, 29: 2938−2943
https://doi.org/10.1016/j.proeng.2012.01.418
21 A J Bell, T J Sejnowski. The Independent components of natural scenes are edge filters. Vision Research, 1997, 37: 3327−3338
https://doi.org/10.1016/S0042-6989(97)00121-1
22 H H Yang, J Moody. Data visualization and feature selection: new algorithms for nongaussian data. In: Proceedings of Advances in Neural Information Processing Systems. 1999, 687−693
23 S M Lewicki, T J Sejnowski. Learning overcomplete representations. Neural Computation, 2000, 12(2): 337−365
https://doi.org/10.1162/089976600300015826
24 A Hyvärinen, E Oja. A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images. Vision Research, 2001, 41(18): 2413−2423
https://doi.org/10.1016/S0042-6989(01)00114-6
25 D Glasner, S Bagon, M Irani. Super-Resolution from a Single Image. In: Proceedings of the 2009 International Conference on Computer Vision. 2009, 349−356
https://doi.org/10.1109/ICCV.2009.5459271
26 A Hyvärinen. Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks, 1999, 10(3): 626−634
https://doi.org/10.1109/72.761722
27 Z Zhang, R S Blum. A categorization of multiscale-decompositionbasedimage fusion schemes with a performance study for a digital camera application. Proceedings of the IEEE, 1999, 87(8): 1315−1326
https://doi.org/10.1109/5.775414
28 G Pajares, J Cruz. A wavelet-based image fusion tutorial. Pattern Recognition, 2004, 37(9): 1855−1872
https://doi.org/10.1016/j.patcog.2004.03.010
29 The image fusion server.
30 C S Xydeas, V Petrovic. Objective pixel-level image fusion performance measure. Electronics Letters, 2000, 36(4): 308−309
https://doi.org/10.1049/el:20000267
31 G Piella, H Heijmans. A new quality metric for image fusion. In: Proceedings of the 2003 International Conference on Image Processing. 2003, 3: 173−176
32 V Petrovic. Subjective tests for image fusion evaluation and objective metric validation. Information Fusion, 2007, 8(2): 208−216
https://doi.org/10.1016/j.inffus.2005.05.001
33 M Elad, M Aharon. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing, 2006, 15(12): 3736−3745
https://doi.org/10.1109/TIP.2006.881969
34 B Yang, S T Li. Pixel-level image fusion with simultaneous orthogonal matching pursuit. Information Fusion, 2012, 13(1): 10−19
https://doi.org/10.1016/j.inffus.2010.04.001
35 VPS Naidu. Image fusion technique using multi-resolution singular value decomposition. Defence Science Journal, 2011, 61(5): 479−484
36 S T Li, B Yang, J W Hu. Performance comparison of different multiresolution transforms for image fusion. Information Fusion, 2011, 12: 74−84
https://doi.org/10.1016/j.inffus.2010.03.002
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed