Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

邮发代号 80-970

2019 Impact Factor: 1.275

Frontiers of Computer Science  2015, Vol. 9 Issue (5): 713-719   https://doi.org/10.1007/s11704-015-4224-9
  本期目录
A statistical learning based image denoising approach
Ke TU,Hongbo LI(),Fuchun SUN
Department of Computer Science and Technology, State Key Laboratory of Intelligent Technology and Systems, Tsinghua University, Beijing 100084, China
 全文: PDF(503 KB)  
Abstract

The image denoising is a very basic but important issue in the field of image procession. Most of the existing methods addressing this issue only show desirable performance when the image complies with their underlying assumptions. Especially, when there is more than one kind of noises, most of the existing methods may fail to dispose the corresponding image. To address this problem, we propose a two-step image denoising method motivated by the statistical learning theory. Under the proposed framework, the type and variance of noise are estimated with support vector machine (SVM) first, and then this information is employed in the proposed denoising algorithm to further improve its denoising performance. Finally, comparative study is constructed to demonstrate the advantages and effectiveness of the proposed method.

Key wordsSVM    image denosing    multiple noises
收稿日期: 2014-05-08      出版日期: 2015-09-24
Corresponding Author(s): Hongbo LI   
 引用本文:   
. [J]. Frontiers of Computer Science, 2015, 9(5): 713-719.
Ke TU,Hongbo LI,Fuchun SUN. A statistical learning based image denoising approach. Front. Comput. Sci., 2015, 9(5): 713-719.
 链接本文:  
https://academic.hep.com.cn/fcs/CN/10.1007/s11704-015-4224-9
https://academic.hep.com.cn/fcs/CN/Y2015/V9/I5/713
1 Li J, Ge H. New progress in geometric computing for image and video processing. Frontiers of Computer Science, 2012, 6(6): 769―775
https://doi.org/10.1007/s11704-012-2910-4
2 Zhao F, Jiao L, Liu H. Fuzzy c-means clustering with non local spatial information for noisy image segmentation. Frontiers of Computer Science in China, 2011, 5(1): 45―56
https://doi.org/10.1007/s11704-010-0393-8
3 Horng S J, Hsu L Y, Li T, Qiao S, Gong X, Chou H H, Khan M K. Using sorted switching median filter to remove high-density impulse noises. Journal of Visual Communication and Image Representation, 2013, 24(7): 956―967
https://doi.org/10.1016/j.jvcir.2013.06.012
4 Om H, Biswas M. An improved image denoising method based on wavelet thresholding. Journal of Signal & Information Processing, 2012, 3(1): 17686―8
https://doi.org/10.4236/jsip.2012.31014
5 Chen G, Qian S E. Denoising of hyperspectral imagery using principal component analysis and wavelet shrinkage. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(3): 973―980
https://doi.org/10.1109/TGRS.2010.2075937
6 Kazerouni A, Kamilov U, Bostan E, Unser M. Bayesian denoising: from MAP to MMSE using consistent cycle spinning. IEEE Signal Processing. Letter, 2013, 20(3): 249―252
https://doi.org/10.1109/LSP.2013.2242061
7 Kumar V, Kumar A. Simulative analysis for image denoising using wavelet thresholding techniques. International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), 2013, 2(5): 1873―1878
8 Gramfort A, Poupon C, Descoteaux M. Denoising and fast diffusion imaging with physically constrained sparse dictionary learning. Medical Image Analysis, 2014, 18(1): 36―49
https://doi.org/10.1016/j.media.2013.08.006
9 Ataman E, Aatre V K, Wong K M. Some statistical properties of median filters. IEEE Transactions on Acoustics, Speech and Signal Processing, 1981, 29(5): 1073―1075
https://doi.org/10.1109/TASSP.1981.1163659
10 Daubechies I, Bates B J. Ten lectures on wavelets. Acoustical Society of America Journal, 1993, 93: 1671
https://doi.org/10.1121/1.406784
11 Donoho D L, Johnstone JM. Ideal spatial adaptation by wavelet shrinkage. Biometrika, 1994, 81(3): 425―455
https://doi.org/10.1093/biomet/81.3.425
12 Donoho D L, Johnstone I M, Kerkyacharian G, Picard D. Wavelet shrinkage: asymptopia? Journal of the Royal Statistical Society. Series B (Methodological), 1995: 301―369
13 Coifman R R, Donoho D L. Translation-invariant de-noising. New York: Springer, 1995
https://doi.org/10.1007/978-1-4612-2544-7_9
14 Chang S G, Yu B, Vetterli M. Adaptive wavelet thresholding for image denoising and compression. IEEE Transactions on Image Processing, 2000, 9(9): 1532―1546
https://doi.org/10.1109/83.862633
15 Fowler J E. The redundant discrete wavelet transform and additive noise. IEEE Signal Processing Letters, 2005, 12(9): 629―632
https://doi.org/10.1109/LSP.2005.853048
16 Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7): 629―639
https://doi.org/10.1109/34.56205
17 Catté F, Lions P L, Morel J M, Coll T. Image selective smoothing and edge detection by nonlinear diffusion. SIAM Journal on Numerical Analysis, 1992, 29(1): 182―193
https://doi.org/10.1137/0729012
18 Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 1992, 60(1): 259―268
https://doi.org/10.1016/0167-2789(92)90242-F
19 Shao Y, Sun F, Li H, Liu Y. Structural similarity-optimal total variation algorithm for image denoising. In: Proceeding of Foundations and Practical Applications of Cognitive Systems and Information Processing. 2014, 833―843
https://doi.org/10.1007/978-3-642-37835-5_72
20 Kulkarni S, Harman G. An elementary introduction to statistical learning theory. Wiley, 2011
https://doi.org/10.1002/9781118023471
21 Smola A J, Scholkopf B. A tutorial on support vector regression. Statistics and Computing, 2004, 14(3): 199―222
https://doi.org/10.1023/B:STCO.0000035301.49549.88
22 AbramowitL M, Stegun I A. Handbook of mathematical functions. New York: Dover, 1970
23 Chang C C, Lin C J. Training v-support vector regression: theory and algorithms. Neural Computation, 2002, 14(8): 1959―1977
https://doi.org/10.1162/089976602760128081
24 Vapnik V. The nature of statistical learning theory. Springer, 2000
https://doi.org/10.1007/978-1-4757-3264-1
25 Sheikh H R, Sabir M F, Bovik A C. A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Transactions on Image Processing, 2006, 15(11): 3440―3451
https://doi.org/10.1109/TIP.2006.881959
26 Wang Z, Bovik A C, Sheikh H R, Simoncelli E P. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 2014, 13(4): 600―612
https://doi.org/10.1109/TIP.2003.819861
27 Hore A, Ziou D. Image quality metrics: PSNR vs. SSIM. In: Proceedings of the 20th International Conference on Pattern Recognition (ICPR). 2010, 2366―2369
https://doi.org/10.1109/icpr.2010.579
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed