| 1 |
Ranganathan P. From microprocessors to nanostores: rethinking datacentric systems. IEEE Computer, 2011, 44(1): 39–48
https://doi.org/10.1109/MC.2011.18
|
| 2 |
Zhu Y Y, Zhong N, Xiong Y. Data explosion, data nature and dataology. In: Proceedings of International Conference on Brain Informatics. 2009, 147–158
https://doi.org/10.1007/978-3-642-04954-5_25
|
| 3 |
Ntoulas A, Cho J, Olston C. What’s new on the Web?: the evolution of the Web from a search engine perspective. In: Proceedings of the 13th International Conference on World Wide Web. 2004, 1–12
https://doi.org/10.1145/988672.988674
|
| 4 |
Bharat K, Broder A. A technique for measuring the relative size and overlap of public web search engines. Computer Networks and ISDN Systems, 1998, 30(1): 379–388
https://doi.org/10.1016/S0169-7552(98)00127-5
|
| 5 |
Williams H E, Zobel J. Searchable words on the Web. International Journal on Digital Libraries, 2005, 5(2): 99–105
https://doi.org/10.1007/s00799-003-0050-z
|
| 6 |
Eisenstein J, O’Connor B, Smith N A, Xing E P. Mapping the geographical diffusion of new words. In: Proceedings of Workshop on Social Network and Social Media Analysis: Methods, Models and Applications. 2012
|
| 7 |
Sun H M. A study of the features of internet english from the linguistic perspective. Studies in Literature and Language, 2010, 1(7): 98–103
|
| 8 |
Chen Q, Li M, Zhou M. Improving query spelling correction usingWeb search results. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. 2007, 181–189
|
| 9 |
Subramaniam L V, Roy S, Faruquie T A, Negi S. A survey of types of text noise and techniques to handle noisy text. In: Proceedings of the 3rd Workshop on Analytics for Noisy Unstructured Text Data. 2009, 115–122
https://doi.org/10.1145/1568296.1568315
|
| 10 |
Ahmad F, Kondrak G. Learning a spelling error model from search query logs. In: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing. 2005, 955–962
https://doi.org/10.3115/1220575.1220695
|
| 11 |
Carpineto C, Romano G. A survey of automatic query expansion in information retrieval. ACM Computing Surveys, 2012, 44(1): 1–50
https://doi.org/10.1145/2071389.2071390
|
| 12 |
Véronis J. Hyperlex: lexical cartography for information retrieval. Computer Speech & Language, 2004, 18(3): 223–252
https://doi.org/10.1016/j.csl.2004.05.002
|
| 13 |
Bernardini A, Carpineto C, Amico M D. Full-subtopic retrieval with keyphrase-based search results clustering. In: Proceedings of IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technologies. 2009, 206–213
https://doi.org/10.1109/WI-IAT.2009.37
|
| 14 |
Wong S K M, Ziarko W, Raghavan V V, Wong P. On modeling of information retrieval concepts in vector spaces. ACM Transactions on Database Systems, 1987, 12(2): 299–321
https://doi.org/10.1145/22952.22957
|
| 15 |
Crestani F. Application of spreading activation techniques in information retrieval. Artificial Intelligence Review, 1997, 11(6): 453–482
https://doi.org/10.1023/A:1006569829653
|
| 16 |
Carpineto C, Romano G. Concept Data Analysis: Theory and Applications. Chichester: John Wiley & Sons, 2004
https://doi.org/10.1002/0470011297
|
| 17 |
Sahlgren M. An introduction to random indexing. In: Proceedings of Methods and Applications of Semantic Indexing Workshop at the 7th International Conference on Terminology and Knowledge Engineering. 2005
|
| 18 |
Melucci M. A basis for information retrieval in context. ACM Transactions on Information Systems, 2008, 26(3): 1–41
https://doi.org/10.1145/1361684.1361687
|
| 19 |
Sun R, Ong C H, Chua T S. Mining dependency relations for query expansion in passage retrieval. In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. 2006, 382–389
https://doi.org/10.1145/1148170.1148237
|
| 20 |
Schlaefer N, Ko J, Betteridge J, Pathak M A, Nyberg E, Sautter G. Semantic extensions of the Ephyra QA system for TREC 2007. In: Proceedings of the 16th Text REtrieval Conference. 2007
|
| 21 |
Kraaij W, Nie J Y, Simard M. Embedding Web-based statistical translation models in cross-language information retrieval. Computational Linguistics, 2003, 29(3): 381–419
https://doi.org/10.1162/089120103322711587
|
| 22 |
Kherfi M L, Ziou D, Bernardi A. Image retrieval from the World Wide Web: issues, techniques, and systems. ACM Computing Surveys, 2004, 36(1): 35–67
https://doi.org/10.1145/1013208.1013210
|
| 23 |
Natsev A P, Haubold A, Tešić J, Xie L X, Yan R. Semantic conceptbased query expansion and re-ranking for multimedia retrieval. In: Proceedings of the 15th ACM International Conference on Multimedia. 2007, 991–1000
|
| 24 |
Arguello J, Elsas J L, Callan J, Carbonell J G. Document representation and query expansion models for blog recommendation. In: Proceedings of the 2nd International Conference on Weblogs and Social Media. 2008, 10–18
|
| 25 |
Hidalgo J M G, de Buenaga Rodríguez M, Pérez J C C. The role of word sense disambiguation in automated text categorization. In: Proceedings of the 10th International Conference on Applications of Natural Language to Information Systems. 2005, 298–309
|
| 26 |
Graupmann J, Cai J, Schenkel R. Automatic query refinement using mined semantic relations. In: Proceedings of International Workshop on Challenges in Web Information Retrieval and Integration. 2005, 205–213
https://doi.org/10.1109/WIRI.2005.12
|
| 27 |
Kamvar M, Baluja S. The role of context in query input: using contextual signals to complete queries on mobile devices. In: Proceedings of the 9th International Conference on Human Computer Interaction with Mobile Devices and Services. 2007, 405–412
https://doi.org/10.1145/1377999.1378046
|
| 28 |
Huang C C, Lin K M, Chien L F. Automatic training corpora acquisition through Web mining. In: Proceedings of IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technologies. 2005, 193–199
|
| 29 |
Perugini S, Ramakrishnan N. Interacting withWeb hierarchies. IT Professional, 2006, 8(4): 19–28
https://doi.org/10.1109/MITP.2006.91
|
| 30 |
Church K, Smyth B. Mobile content enrichment. In: Proceedings of the 12th International Conference on Intelligent User Interfaces. 2007, 112–121
https://doi.org/10.1145/1216295.1216320
|
| 31 |
Macdonald C, Ounis I. Expertise drift and query expansion in expert search. In: Proceedings of the 16th ACM Conference on Conference on Information and Knowledge Management. 2007, 341–350
https://doi.org/10.1145/1321440.1321490
|
| 32 |
Billerbeck B, Zobel J. Document expansion versus query expansion for ad-hoc retrieval. In: Proceedings of the 10th Australasian Document Computing Symposium. 2005, 34–41
|
| 33 |
Shokouhi M, Azzopardi L, Thomas P. Effective query expansion for federated search. In: Proceedings of the 32nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. 2009, 427–434
https://doi.org/10.1145/1571941.1572015
|
| 34 |
Wang H, Liang Y, Fu L, Xue G R, Yu Y. Efficient query expansion for advertisement search. In: Proceedings of the 32nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. 2009, 51–58
https://doi.org/10.1145/1571941.1571953
|
| 35 |
Voorhees E M. Query expansion using lexical-semantic relations. In: Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. 1994, 61–69
https://doi.org/10.1007/978-1-4471-2099-5_7
|
| 36 |
Collins-Thompson K, Callan J. Query expansion using random walk models. In: Proceedings of the 14th ACM International Conference on Information and Knowledge Management. 2005, 704–711
https://doi.org/10.1145/1099554.1099727
|
| 37 |
Liu S, Liu F, Yu C, Meng W Y. An effective approach to document retrieval via utilizing wordnet and recognizing phrases. In: Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. 2004, 266–272
https://doi.org/10.1145/1008992.1009039
|
| 38 |
Song M, Song I Y, Hu X H, Allen R B. Integration of association rules and ontologies for semantic query expansion. Data & Knowledge Engineering, 2007, 63(1): 63–75
https://doi.org/10.1016/j.datak.2006.10.010
|
| 39 |
Gauch S, Wang J Y, Rachakonda S M. A corpus analysis approach for automatic query expansion and its extension to multiple databases. ACM Transactions on Information Systems, 1999, 17(3): 250–269
https://doi.org/10.1145/314516.314519
|
| 40 |
Hu J N, Deng W H, Guo J. Improving retrieval performance by global analysis. In: Proceedings of the 18th International Conference on Pattern Recognition. 2006, 703–706
|
| 41 |
Park L A, Ramamohanarao K. Query expansion using a collection dependent probabilistic latent semantic thesaurus. In: Proceedings of the 11th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. 2007, 224–235
https://doi.org/10.1007/978-3-540-71701-0_24
|
| 42 |
Milne D N, Witten I H, Nichols D M. A knowledge-based search engine powered by wikipedia. In: Proceedings of the 16th ACM Conference on Conference on Information and Knowledge Management. 2007, 445–454
https://doi.org/10.1145/1321440.1321504
|
| 43 |
Rocchio J J. Relevance feedback in information retrieval. The SMART Retrieval System-Experiments in Automatic Document Processing, 1971, 313–323
|
| 44 |
Robertson S E, Jones K S. Relevance weighting of search terms. Journal of the American Society for Information Science, 1976, 27(3): 129–146
https://doi.org/10.1002/asi.4630270302
|
| 45 |
Wong W, Luk R W P, Leong H V, Ho K, Lee D L. Re-examining the effects of adding relevance information in a relevance feedback environment. Information Processing & Management, 2008, 44(3): 1086–1116
https://doi.org/10.1016/j.ipm.2007.12.002
|
| 46 |
Zhai C X, Lafferty J. Model-based feedback in the language modeling approach to information retrieval. In: Proceedings of the 10th International Conference on Information and Knowledge Management. 2001, 403–410
https://doi.org/10.1145/502585.502654
|
| 47 |
Lavrenko V, Croft W B. Relevance based language models. In: Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. 2001, 120–127
https://doi.org/10.1145/383952.383972
|
| 48 |
Khennak I, Drias H. Strength pareto fitness assignment for generating expansion features. In: Proceedings of the 3rd World Conference on Information Systems and Technologies. 2015, 133–142
https://doi.org/10.1007/978-3-319-16486-1_13
|
| 49 |
Robertson S, Zaragoza H. The Probabilistic Relevance Framework: BM25 and Beyond. Foundations and Trends® in Information Retrieval, 2009, 3(4): 333–389
|
| 50 |
Robertson S E. On term selection for query expansion. Journal of Documentation, 1990, 46(4): 359–364
https://doi.org/10.1108/eb026866
|
| 51 |
Carpineto C, De Mori R, Romano G, Bigi B. An information-theoretic approach to automatic query expansion. ACM Transactions on Information Systems, 2001, 19(1): 1–27
https://doi.org/10.1145/366836.366860
|
| 52 |
Jurafsky D, Martin J H. Speech and Language Processing. Upper Saddle River, NJ: Pearson Prentice Hall, 2014
|