Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

邮发代号 80-970

2019 Impact Factor: 1.275

Frontiers of Computer Science  2023, Vol. 17 Issue (1): 171307   https://doi.org/10.1007/s11704-021-0562-y
  本期目录
SR-AFU: super-resolution network using adaptive frequency component upsampling and multi-resolution features
Ke-Jia CHEN1,2, Mingyu WU3(), Yibo ZHANG3, Zhiwei CHEN3
1. School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
2. Jiangsu Key Laboratory of Big Data Security & Intelligent Processing, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
3. College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
 全文: PDF(35059 KB)   HTML
Abstract

Image super-resolution (SR) is one of the classic computer vision tasks. This paper proposes a super-resolution network based on adaptive frequency component upsampling, named SR-AFU. The network is composed of multiple cascaded dilated convolution residual blocks (CDCRB) to extract multi-resolution features representing image semantics, and multiple multi-size convolutional upsampling blocks (MCUB) to adaptively upsample different frequency components using CDCRB features. The paper also defines a new loss function based on the discrete wavelet transform, making the reconstructed SR images closer to human perception. Experiments on the benchmark datasets show that SR-AFU has higher peak signal to noise ratio (PSNR), significantly faster training speed and more realistic visual effects compared with the existing methods.

Key wordssuper-resolution    multi-resolution features    adaptive frequency upsampling    wavelet transformation
收稿日期: 2020-11-25      出版日期: 2022-03-01
Corresponding Author(s): Mingyu WU   
 引用本文:   
. [J]. Frontiers of Computer Science, 2023, 17(1): 171307.
Ke-Jia CHEN, Mingyu WU, Yibo ZHANG, Zhiwei CHEN. SR-AFU: super-resolution network using adaptive frequency component upsampling and multi-resolution features. Front. Comput. Sci., 2023, 17(1): 171307.
 链接本文:  
https://academic.hep.com.cn/fcs/CN/10.1007/s11704-021-0562-y
https://academic.hep.com.cn/fcs/CN/Y2023/V17/I1/171307
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Method Dilated Conv. AFU Losswav PSNR/dB
SR-AFU variants × × × 38.12
× × 38.19
× × 38.21
× 38.25
× × 38.15
× 38.23
× 38.24
38.27
Tab.1  
Scale Method Set5 Set14 BSDS100 Urban100
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
2 Bicubic 33.66 0.9299 30.24 0.8688 29.56 0.8431 26.88 0.8403
SRCNN [34] 36.66 0.9542 32.45 0.9067 31.36 0.8879 29.50 0.8946
FSRCNN [18] 37.05 0.9560 32.66 0.9090 31.53 0.8920 29.88 0.9020
VDSR [11] 37.53 0.9590 33.05 0.9130 31.90 0.8960 30.77 0.9140
LapSRN [20] 37.52 0.9591 33.08 0.9130 31.08 0.8950 30.41 0.9140
MemNet [35] 37.78 0.9597 33.28 0.9142 32.08 0.8978 31.31 0.9195
EDSR [23] 38.11 0.9602 33.92 0.9195 32.32 0.9013 32.93 0.9351
DBPN [36] 38.09 0.9600 33.85 0.9190 32.27 0.9000 32.55 0.9326
IMDN [38] 38.00 0.9605 33.63 0.9177 32.19 0.8996 32.17 0.9283
PAN [39] 38.00 0.9605 33.59 0.9181 32.18 0.8997 32.01 0.9273
AWSRN [40] 38.11 0.9608 33.78 0.9189 32.26 0.9006 32.49 0.9316
RDN [13] 38.24 0.9614 34.01 0.9212 32.34 0.9017 32.89 0.9353
SR-AFU (ours) 38.27 0.9615 34.03 0.9215 32.34 0.9016 33.12 0.9361
3 Bicubic 30.39 0.8682 27.55 0.7742 27.21 0.7386 24.46 0.7340
SRCNN [34] 32.75 0.9090 29.30 0.8215 28.14 0.7863 26.24 0.7989
FSRCNN [18] 33.18 0.9140 29.37 0.8240 28.53 0.7910 26.43 0.8080
VDSR [11] 33.67 0.9210 29.78 0.8320 28.82 0.7980 27.07 0.8280
LapSRN [20] 33.82 0.9227 29.87 0.8350 28.96 0.8001 27.56 0.8376
MemNet [35] 34.09 0.9248 30.01 0.8350 28.96 0.8001 27.56 0.8376
EDSR [23] 34.65 0.9280 30.52 0.8462 28.97 0.8025 27.57 0.8398
IMDN [38] 34.36 0.9270 30.32 0.8417 29.09 0.8046 28.17 0.8519
PAN [39] 34.40 0.9271 30.36 0.8423 29.11 0.8050 28.11 0.8511
AWSRN [40] 34.52 0.9281 30.38 0.8426 29.16 0.8069 28.42 0.8580
RDN [13] 34.71 0.9296 30.57 0.8468 29.26 0.8093 28.80 0.8653
SR-AFU (ours) 34.74 0.9293 30.60 0.8471 29.28 0.8097 28.91 0.8665
4 Bicubic 28.42 0.8103 26.00 0.7027 25.96 0.6676 23.14 0.6576
SRCNN [34] 30.48 0.8628 27.50 0.7513 26.90 0.7101 24.52 0.7221
FSRCNN [18] 30.72 0.8660 27.61 0.7500 26.98 0.7150 24.62 0.7280
VDSR [11] 31.35 0.8830 28.02 0.7680 27.29 0.7026 25.18 0.7540
LapSRN [20] 31.54 0.8850 28.19 0.7720 27.32 0.7270 25.21 0.7560
MemNet [35] 31.74 0.8893 28.26 0.7723 27.40 0.7281 25.50 0.7630
EDSR [23] 32.46 0.8969 28.81 0.7875 27.71 0.7421 26.62 0.8033
DBPN [36] 32.47 0.8980 28.82 0.7860 27.72 0.7400 26.38 0.7946
SRFBN-S 31.98 0.8920 28.45 0.7780 27.44 0.7310 25.71 0.7720
SRFBN [37] 32.39 0.897 28.77 0.7860 27.68 0.740 26.47 0.798
IMDN [38] 32.21 0.8948 28.58 0.7811 27.56 0.7353 26.04 0.7838
PAN [39] 32.13 0.8948 28.61 0.7822 27.59 0.7363 26.11 0.7854
AWSRN [40] 32.27 0.8960 28.69 0.7843 27.64 0.7385 26.29 0.7930
RDN [13] 32.47 0.8990 28.81 0.7871 27.72 0.7419 26.61 0.8028
SR-AFU (ours) 32.47 0.8987 28.82 0.7879 27.73 0.7420 26.65 0.8042
Tab.2  
Image shape Index SR-AFU RCAN
(2×) (1,320,480,3) Parameters 2,357,264 15,513,283
Time/s 1.9074778 3.2828535
PSNR 33.12 33.34
(3×) (1,160,240,3) Parameters 2,497,124 15,882,563
Time/s 0.5087615 1.096696
PSNR 28.91 29.09
(4×) (1,80,120,3) Parameters 2,692,928 16,399,555
Time/s 0.1530186 0.4655488
PSNR 26.65 26.82
Tab.3  
Fig.7  
  
  
  
  
1 W T Freeman , E C Pasztor , O T Carmichael . Learning low-level vision. International Journal of Computer Vision, 2000, 40( 1): 25– 47
2 W Shi, J Caballero, C Ledig, X Zhuang, W Bai, K Bhatia, Marvao A M S M de, T Dawes, D O’Regan, D Rueckert. Cardiac image super-resolution with global correspondence using multi-atlas patchmatch. In: Proceedings of the 16th International Conference on Medical Image Computing and Computer-Assisted Intervention. 2013, 9−16
3 S Zhang , G Liang , S Pan , L Zheng . A fast medical image super resolution method based on deep learning network. IEEE Access, 2018, 7 : 12319– 12327
4 J Oh , C Lee , D C Seo . Automated HRSI georegistration using orthoimage and SRTM: focusing KOMPSAT-2 imagery. Computers & Geosciences, 2013, 52 : 77– 84
5 K Nogueira , O A B Penatti , J A Dos Santos . Towards better exploiting convolutional neural networks for remote sensing scene classification. Pattern Recognition, 2017, 61 : 539– 556
6 X Hu , P Ma , Z Mai , S Peng , Z Yang , L Wang . Face hallucination from low quality images using definition-scalable inference. Pattern Recognition, 2019, 94 : 110– 121
7 L C Chen, Y Zhu, G Papandreou, F Schroff, H Adam. Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the 15th European Conference on Computer Vision. 2018, 833−851
8 P Li, Q Wang, W Zuo, L Zhang. Log-Euclidean kernels for sparse representation and dictionary learning. In: Proceedings of IEEE International Conference on Computer Vision. 2013, 1601−1608
9 Y Lee, Y Choe. Neighbor embedding based single image super-resolution using hybrid feature and adaptive weight decay regularization. In: Proceedings of the 4th IEEE International Conference on Consumer Electronics Berlin. 2014, 185−187
10 C Dong , C C Loy , K He , X Tang . Image super-resolution using deep convolutional networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38( 2): 295– 307
11 J Kim, J K Lee, K M Lee. Accurate image super-resolution using very deep convolutional networks. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2016, 1646−1654
12 J Kim, J K Lee, K M Lee. Deeply-recursive convolutional network for image super-resolution. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2016, 1637−1645
13 Y Zhang, Y Tian, Y Kong, B Zhong, Y Fu. Residual dense network for image super-resolution. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018, 2472−2481
14 Y Zhang, K Li, K Li, L Wang, B Zhong, Y Fu. Image super-resolution using very deep residual channel attention networks. In: Proceedings of the 15th European Conference on Computer Vision. 2018, 294−310
15 M S Rad, B Bozorgtabar, U V Marti, M Basler, H K Ekenel, J P Thiran. SROBB: targeted perceptual loss for single image super-resolution. In: Proceedings of IEEE/CVF International Conference on Computer Vision. 2019, 2710−2719
16 M K Ng , H Shen , E Y Lam , L Zhang . A total variation regularization based super-resolution reconstruction algorithm for digital video. EURASIP Journal on Advances in Signal Processing, 2007, 2007 : 074585–
17 K Jiang , Z Wang , P Yi , J Jiang . Hierarchical dense recursive network for image super-resolution. Pattern Recognition, 2020, 107 : 107475–
18 C Dong, C C Loy, X Tang. Accelerating the super-resolution convolutional neural network. In: Proceedings of the 14th European Conference on Computer Vision. 2016, 391−407
19 K He, X Zhang, S Ren, J Sun. Deep residual learning for image recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2016, 770−778
20 W S Lai, J B Huang, N Ahuja, M H Yang. Deep laplacian pyramid networks for fast and accurate super-resolution. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2017, 5835−5843
21 C Ledig, L Theis, F Huszár, J Caballero, A Cunningham, A Acosta, A Aitken, A Tejani, J Totz, Z Wang, W Shi. Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2017, 105−114
22 X Wang, K Yu, S Wu, J Gu, Y Liu, C Dong, Y Qiao, C C Loy. ESRGAN: enhanced super-resolution generative adversarial networks. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops. 2018, 63−79
23 B Lim, S Son, H Kim, S Nah, K M Lee. Enhanced deep residual networks for single image super-resolution. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2017, 1132−1140
24 J Yu, Y Fan, J Yang, N Xu, Z Wang, X Wang, T Huang. Wide activation for efficient and accurate image super-resolution. 2018, arXiv preprint arXiv: 1808.08718
25 T Dai, J Cai, Y Zhang, S T Xia, L Zhang. Second-order attention network for single image super-resolution. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019, 11057−11066
26 H Zhao, O Gallo, I Frosio, J Kautz. Loss functions for neural networks for image processing. 2018, arXiv preprint arXiv: 1511.08861
27 R Timofte, E Agustsson, L Van Gool, M H Yang, L Zhang. NTIRE 2017 challenge on single image super-resolution: methods and results. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2017, 1110−1121
28 M Bevilacqua, A Roumy, C Guillemot, M L A Morel. Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In: Proceedings of British Machine Vision Conference. 2012
29 R Zeyde, M Elad, M Protter. On single image scale-up using sparse-representations. In: Proceedings of the 7th International Conference on Curves and Surfaces. 2010, 711−730
30 D Martin, C Fowlkes, D Tal, J Malik. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the 8th IEEE International Conference on Computer Vision. 2001, 416−423
31 J B Huang, A Singh, N Ahuja. Single image super-resolution from transformed self-exemplars. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2015, 5197−5206
32 D P Kingma, J Ba. Adam: a method for stochastic optimization. In: Proceedings of the 3rd International Conference for Learning Representations. 2015
33 Z Wang , A C Bovik , H R Sheikh , E P Simoncelli . Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 2004, 13( 4): 600– 612
34 C Dong, C C Loy, K He, X Tang. Learning a deep convolutional network for image super-resolution. In: Proceedings of the 13th European Conference on Computer Vision. 2014, 184−199
35 Y Tai, J Yang, X Liu, C Xu. MemNet: a persistent memory network for image restoration. In: Proceedings of IEEE International Conference on Computer Vision. 2017, 4549−4557
36 M Haris, G Shakhnarovich, N Ukita. M Haris, G Shakhnarovich, N Ukita. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018, 1664−1673
37 Z Li, J Yang, Z Liu, X Yang, G Jeon, W Wu. Feedback network for image super-resolution. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019, 3862−3871
38 Z Hui, X Gao, Y Yang, X Wang. Lightweight image super-resolution with information multi-distillation network. In: Proceedings of the 27th ACM International Conference on Multimedia. 2019, 2024−2032
39 H Zhao, X Kong, J He, Y Qiao, C Dong. Efficient image super-resolution using pixel attention. In: Proceedings of the European Conference on Computer Vision. 2020, 56−72
40 C Wang, Z Li, J Shi. Lightweight image super-resolution with adaptive weighted learning network. 2019, arXiv preprint arXiv: 1904.02358
[1] Highlights Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed