1. State Key Lab of Software Development Environment (SKLSDE), Beihang University, Beijing 100191, China 2. Beijing Advanced Innovation Center for Big Data and Brain Computing (BDBC), Beijing 100191, China 3. Hangzhou Innovation Institute, Beihang University, Hangzhou 310052, China 4. School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
M Olson A J Wyner R Berk. Modern neural networks generalize on small data sets. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems. 2018, 3623– 3632
2
J Wang Z Wang J Li J Wu. Multilevel wavelet decomposition network for interpretable time series analysis. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018, 2437– 2446
3
W Yang H Huang Z Zhang X Chen K Huang S Zhang. Towards rich feature discovery with class activation maps augmentation for person re-identification. In: Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019, 1389– 1398
4
J Wang , Z Peng , X Wang , C Li , J Wu . Deep fuzzy cognitive maps for interpretable multivariate time series prediction. IEEE Transactions on Fuzzy Systems, 2021, 29( 9): 2647– 2660
5
D Lee S Lee H Yu. Learnable dynamic temporal pooling for time series classification. In: Proceedings of the 35th AAAI Conference on Artificial Intelligence. 2021, 8288– 8296
6
N Chen , J Zhu , J Chen , T Chen . Dropout training for SVMs with data augmentation. Frontiers of Computer Science, 2018, 12( 4): 694– 713
7
G Forestier F Petitjean H A Dau G I Webb E Keogh. Generating synthetic time series to augment sparse datasets. In: Proceedings of 2017 IEEE International Conference on Data Mining. 2017, 865– 870
8
B K Iwana S Uchida. Time series data augmentation for neural networks by time warping with a discriminative teacher. In: Proceedings of the 25th International Conference on Pattern Recognition. 2021, 3558– 3565