Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

邮发代号 80-970

2019 Impact Factor: 1.275

Frontiers of Computer Science  2023, Vol. 17 Issue (4): 174326   https://doi.org/10.1007/s11704-022-2023-7
  本期目录
An improved master-apprentice evolutionary algorithm for minimum independent dominating set problem
Shiwei PAN1,2, Yiming MA1,2, Yiyuan WANG1,2, Zhiguo ZHOU1,2(), Jinchao JI1,2(), Minghao YIN1,2(), Shuli HU1,2
1. School of Computer Science and Information Technology, Northeast Normal University, Changchun 130117, China
2. Key Laboratory of Applied Statistics of MOE, Northeast Normal University, Changchun 130117, China
 全文: PDF(5126 KB)   HTML
Abstract

The minimum independent dominance set (MIDS) problem is an important version of the dominating set with some other applications. In this work, we present an improved master-apprentice evolutionary algorithm for solving the MIDS problem based on a path-breaking strategy called MAE-PB. The proposed MAE-PB algorithm combines a construction function for the initial solution generation and candidate solution restarting. It is a multiple neighborhood-based local search algorithm that improves the quality of the solution using a path-breaking strategy for solution recombination based on master and apprentice solutions and a perturbation strategy for disturbing the solution when the algorithm cannot improve the solution quality within a certain number of steps. We show the competitiveness of the MAE-PB algorithm by presenting the computational results on classical benchmarks from the literature and a suite of massive graphs from real-world applications. The results show that the MAE-PB algorithm achieves high performance. In particular, for the classical benchmarks, the MAE-PB algorithm obtains the best-known results for seven instances, whereas for several massive graphs, it improves the best-known results for 62 instances. We investigate the proposed key ingredients to determine their impact on the performance of the proposed algorithm.

Key wordsevolutionary algorithm    combinatorial optimization    minimum independent dominating set    local search    master apprentice    path breaking
收稿日期: 2022-01-13      出版日期: 2022-12-09
Corresponding Author(s): Zhiguo ZHOU,Jinchao JI,Minghao YIN   
 引用本文:   
. [J]. Frontiers of Computer Science, 2023, 17(4): 174326.
Shiwei PAN, Yiming MA, Yiyuan WANG, Zhiguo ZHOU, Jinchao JI, Minghao YIN, Shuli HU. An improved master-apprentice evolutionary algorithm for minimum independent dominating set problem. Front. Comput. Sci., 2023, 17(4): 174326.
 链接本文:  
https://academic.hep.com.cn/fcs/CN/10.1007/s11704-022-2023-7
https://academic.hep.com.cn/fcs/CN/Y2023/V17/I4/174326
Fig.1  
  
  
  
  
  
Parameter Ranges Description Final values
θ {2, 5, 8 } The number of each round 5
α {0.4, 0.5, 0.6, 0.7, 0.8} The similarity of candidate solutions 0.7
β {40%, 50%, 60%, 70%, 80%} The probability of remove vertices 50%
γ {40%, 50%, 60%, 70%, 80%} The probability of remove vertices 40%
s {200, 500, 800} The number of each round 500
π {0.4, 0.5, 0.6, 0.7, 0.8, 0.9} The range of restricted candidate list 0.8
Tab.1  
Instance GRASP+PC MEMETIC drMIDS ILPS2 ILPS3 MAE-PB
min avg min avg min avg min avg min avg min avg
brock200_2 4 4 4 4 4 4 4 4 4 4 4 4
brock200_4 6 6.3 6 6 6 6 6 6 6 6 6 6
brock400_2 10 10 9 9.3 9 9 10 10 9 10 9 9
brock400_4 9 9.3 9 9 9 9 9 9.9 9 10 9 9
brock800_2 8 8.2 8 8.1 8 8 8 8.7 8 8.9 8 8
brock800_4 8 8.2 8 8 8 8 8 8.5 8 8.8 8 8
C1000.9 26 26.9 26 27.5 25 25.5 27 28 27 27.8 25 26
C125.9 15 15 14 14 14 14 14 14 14 14 14 14
C2000.5 7 7 7 7 7 7 7 7 7 7 7 7
C2000.9 33 33.2 33 33.5 32 32 32 33.8 32 34 31 31.7
C250.9 17 17 17 17 17 17 17 17 17 17 17 17
C4000.5 8 8 8 8 8 8 8 8 8 8 8 8
C500.9 23 23 22 22 21 21 22 22.2 22 22.3 21 21
c-fat200-1.clq 13 13 13 13 13 13 13 13 13 13 13 13
c-fat200-2.clq 6 6 6 6 6 6 6 6 6 6 6 6
c-fat200-5.clq 3 3 3 3 3 3 3 3 3 3 3 3
c-fat500-1.clq 27 27 27 27 27 27 27 27 27 27 27 27
c-fat500-2.clq 14 14 14 14 14 14 14 14 14 14 14 14
c-fat500-5.clq 6 6 6 6 6 6 6 6 6 6 6 6
DSJC1000.5 6 6 6 6 6 6 6 6 6 6 6 6
DSJC500.5 5 5 5 5 5 5 5 5 5 5 5 5
gen200_p0.9_44 16 16.1 16 16 16 16 16 16 16 16 16 16
gen200_p0.9_55 16 16 16 16 16 16 16 16 16 16 16 16
gen400_p0.9_55 21 21.2 20 20 20 20 20 20.1 20 20.3 20 20
gen400_p0.9_65 21 21.1 20 20.1 20 20 20 20.8 20 20.8 20 20
gen400_p0.9_75 20 20.4 20 20.3 20 20 20 20.8 20 20.6 20 20
hamming10-4 12 12.3 12 12 12 12 12 12 12 12 12 12
Tab.2  
Instance GRASP+PC MEMETIC drMIDS ILPS2 ILPS3 MAE-PB
min avg min avg min avg min avg min avg min avg
hamming6-2 12 12.8 12 12 12 12 12 12 12 12 12 12
hamming6-4 2 2 2 2 2 2 2 2 2 2 2 2
hamming8-2 32 40.1 36 43.1 32 32 36 36 36 36 32 32
hamming8-4 4 4 4 4 4 4 4 4 4 4 4 4
johnson16-2-4 8 8 8 8 8 8 8 8 8 8 8 8
johnson32-2-4 16 16 16 16 16 16 16 16 16 16 16 16
johnson8-2-4 4 4 4 4 4 4 4 4 4 4 4 4
johnson8-4-4 7 7 7 7 7 7 7 7 7 7 7 7
keller4 5 5 5 5 5 5 5 5 5 5 5 5
keller5 9 9.4 9 9 9 9 9 9 9 9 9 9
keller6 17 17.6 17 17.9 15 17.2 17 18 18 18.3 15 15.1
MANN_a27 27 27 27 27 27 27 27 27 27 27 27 27
MANN_a45 45 45 45 45 45 45 45 45 45 45 45 45
MANN_a81 81 81 81 81 81 81 81 81 81 81 81 81
MANN_a9 9 9 9 9 9 9 9 9 9 9 9 9
p_hat1500-1.clq 13 13.4 13 13.9 12 12.7 13 14.1 13 14.3 12 12.4
p_hat1500-2.clq 7 8 7 7.9 7 7.7 7 7.7 7 7.8 7 7.2
p_hat1500-3.clq 3 3 3 3 3 3 3 3.1 3 3.3 3 3
p_hat300-1.clq 9 9 9 9 9 9 9 9 9 9 9 9
p_hat300-2.clq 5 5.1 5 5 5 5 5 5 5 5 5 5
p_hat300-3.clq 3 3 3 3 3 3 3 3 3 3 3 3
p_hat700-1.clq 11 11 11 11 11 11 11 11 11 11.2 11 11
p_hat700-2.clq 6 6.5 6 6.3 6 6 6 6.6 6 6.4 6 6
p_hat700-3.clq 3 3 3 3 3 3 3 3 3 3 3 3
san1000 4 4 4 4 4 4 4 4.7 4 4.2 4 4
san200_0.7_1 7 7 6 6 6 6 6 6.1 6 6.8 6 6
san200_0.7_2 6 6 6 6 6 6 6 6 6 6 6 6
san200_0.9_1 16 16 15 15 15 15 15 15 15 15 15 15
san200_0.9_2 16 16.4 16 16 16 16 16 16 16 16 16 16
san200_0.9_3 15 15.1 15 15 15 15 15 15.3 15 15.1 15 15
san400_0.5_1 4 4 4 4 4 4 4 4 4 4 4 4
san400_0.7_1 7 7.1 7 7 7 7 7 7.9 8 8 7 7
san400_0.7_2 7 7 7 7 7 7 7 7.6 7 7.9 7 7
san400_0.7_3 8 8 7 7 7 7 7 7.8 8 8 7 7
Tab.3  
Instance GRASP+PC MEMETIC drMIDS ILPS2 ILPS3 MAE-PB
min avg min avg min avg min avg min avg min avg
frb30-15-1 11 11 11 11 11 11 11 11.2 11 11.7 11 11
frb30-15-2 11 11.4 11 11.1 11 11 11 11.7 11 11.9 11 11
frb30-15-3 12 12 11 11.2 11 11 11 11.9 11 11.9 11 11
frb30-15-4 12 12 11 11 11 11 11 11.2 11 11.7 11 11
frb30-15-5 11 11.2 11 11.3 11 11 11 11.7 11 11.9 11 11
frb35-17-1 14 14 13 13.6 13 13 13 13.9 13 14 13 13
frb35-17-2 13 13.7 13 13.9 13 13 13 13.8 13 14 13 13
frb35-17-3 13 13.3 13 13.6 13 13 13 13.8 13 14 13 13
frb35-17-4 14 14 13 13.9 13 13.3 13 13.8 13 13.9 13 13.3
frb35-17-5 14 14 14 14 13 13.6 14 14 14 14.2 13 13.4
frb40-19-1 16 16 16 16 15 15.4 16 16.1 16 16.6 15 15
frb40-19-2 16 16 15 15.9 15 15 15 15.7 16 16.1 15 15
frb40-19-3 15 15.6 15 15.9 15 15 15 15.8 15 16.1 15 15
frb40-19-4 15 15.4 15 15.9 15 15 15 15.7 15 16 15 15
frb40-19-5 15 15.7 15 15.9 15 15.2 15 15.8 15 16 15 15
frb45-21-1 18 18 18 18.9 17 17.8 18 18.2 18 18.7 17 17.5
frb45-21-2 18 18 18 18.7 17 17.9 17 18 17 18.6 17 17.6
frb45-21-3 18 18.1 18 18.4 17 17.4 17 17.8 17 18.4 17 17
frb45-21-4 18 18 18 18.6 17 17.5 18 18.1 18 18.6 17 17.1
frb45-21-5 17 17.9 18 18.5 17 17.5 17 18 17 18.3 17 17
frb50-23-1 20 20 20 20.9 19 19.9 19 20.2 20 20.8 19 19.5
frb50-23-2 20 20.2 21 21 19 19.9 20 20.5 20 20.8 19 19.8
frb50-23-3 20 20.3 20 20.9 19 19.8 20 20.2 20 20.8 19 19.6
frb50-23-4 20 20.5 21 21.4 19 19.9 20 20.8 20 21 19 19.8
frb50-23-5 21 21 21 21.3 20 20 20 20.4 20 20.8 19 19.7
frb53-24-1 22 22.1 22 22.8 21 21.1 20 21.8 21 22.4 20 20.8
frb53-24-2 22 22 22 22.7 21 21.5 21 21.7 21 22.1 20 21
frb53-24-3 21 21.1 21 22.1 20 20.9 21 21.4 21 21.8 20 20.7
frb53-24-4 21 21.2 21 22 20 20.9 21 21.9 21 22.1 20 20.4
frb53-24-5 21 21.6 22 22.5 20 21.1 21 21.7 21 21.9 20 20.9
frb56-25-1 22 22.8 24 24.1 21 22.4 22 23.1 23 23.7 21 22.1
frb56-25-2 23 23.2 24 24.3 22 22.8 22 23.3 23 23.7 22 22.5
frb56-25-3 22 22.9 23 24 22 22.8 22 23.1 22 23.3 22 22
frb56-25-4 23 23.1 24 24.1 22 22.8 22 23.2 23 23.7 21 22.4
frb56-25-5 22 22.4 22 22.8 22 22.3 22 22.8 22 23.3 21 21.9
frb59-26-1 24 24.1 24 25.4 23 23.6 23 24.4 23 24.6 22 23
frb59-26-2 24 24.2 24 25.6 23 23.9 22 24 23 24.6 23 23.2
frb59-26-3 24 24.7 25 25.9 23 23.7 24 24.7 23 25 23 23.8
frb59-26-4 24 24.4 24 25.6 23 23.9 24 24.4 24 24.8 23 23.6
frb59-26-5 25 25.4 25 25.8 24 24.2 23 24.3 24 24.7 23 23.8
frb100-40 44 44.8 48 49.5 43 44.4 43 44.5 43 45.3 42 43.4
Tab.4  
Instance GRASP+PC MEMETIC drMIDS ILPS2 ILPS3 MAE-PB
min avg min avg min avg min avg min avg min avg
bn-***0025865 ***1-bg 1198908 1199212.7 1205376 1206233.1 1197891 1200437.9 1197011 1197168.4 1197398 1197555.9 1194499 1196200
bn-***0025865 ***2-bg 1561094 1561624.3 1575465 1577527.3 1563155 1570989.5 1559833 1559866.6 1559492 1559696.1 1556455 1558023.6
ca-coauthors-dblp 49186 49250.3 52386 52494.1 44363 44989.5 44253 44288.9 44750 44772.2 43035 44088.8
ca-dblp-2012 94758 94938.6 110109 110325.1 87656 87812.8 87598 87689.9 110057 110196.5 87508 87698.1
ca-hollywood-2009 140801 141065.7 155263 155549.6 143519 146696.6 152861 153152.9 178556 178981.5 128137 128290.1
channel***-b050 486263 486449.8 491998 492225.5 489722 490215.8 420666 420853.7 566799 567380.7 409978 410258.8
dbpedia-link N/A N/A 8612327 8629696.2 8627747 8637426.5 8908597 8911196.6 N/A N/A 7533823 7535700.8
delaunay_n22 864130 864485.6 868437 868881.7 865422 865856.5 806316 806730.5 1030255 1030610.1 744805 745267.7
delaunay_n23 1728925 1729304.8 1737228 1737950.7 1736327 1737009.7 1613584 1613809.2 2060811 2061390.1 1489753 1490376.1
delaunay_n24 3458413 3459279.8 3475398 3476268 3475650 3476635.9 N/A N/A N/A N/A 2979750 2980281.9
friendster 4473674 4493361.4 6848800 6863274.8 6601967 6846328.6 7183568 7191256.2 7243029 7247583 3547353 3548971.8
hugebubbles-00020 7800496 7801942.6 7522388 7523370.2 7523382 7524471.3 6952078 6952078 N/A N/A 6800602 6801761.9
hugetrace-00010 4446308 4447087.9 4285018 4285538.9 4284436 4285910.7 3962433 3963354.7 4687640 4688997.3 3875488 3876764.2
hugetrace-00020 5899134 5900269.8 5686663 5687271.6 5686893 5687917.5 5256729 5257882.7 6218412 6219513.8 5142114 5143085.2
inf-europe_osm 20767515 20768636.8 N/A N/A 20052008 20053573.3 N/A N/A N/A N/A 18314284 18315597.7
inf-germany_osm 4669787 4670887.1 4524573 4525242 4523638 4525116.1 4310573 4311235.7 5053976 5054966.2 4134178 4134983.6
inf-roadNet-CA 740604 740878.9 732830 733158.5 728927 729330.5 695837 696003.7 822287 822601.4 662664 662926.6
inf-roadNet-PA 412501 412731.3 408678 409058.2 401804 402169.8 386994 387294.5 458039 458370.8 369370 369601.5
inf-road-usa 9547166 9548928.8 9449606 9450335.3 9449603 9451604.6 9125541 9126508.7 10765734 10766635.9 8610251 8611245.9
rec-dating 40149 41157.5 51462 52377.3 48632 51806.4 36744 36767 36769 36790.8 32671 33502.1
rec-epinions 320240 368998.1 5663900 564657.2 N/A N/A 595675 612617.7 602861 620295.4 134669 134715.3
rec-libimseti-dir 62046 66435.6 82520 85169.9 79938 85061.2 63429 63495.9 63483 63483 50070 53154.7
rgg_n_2_23_s0 858105 858435.1 867425 867715.9 865936 866444.8 736027 736356.3 954528 954785.4 704494 704696.2
rgg_n_2_24_s0 1656337 1656833.6 1674237 1674731.7 1673505 1674445.7 N/A N/A 1839520 1839520 1357335 1357670
rt-retweet-crawl 470537 475864.1 890477 893937.5 531197 695539.5 971833 972959.2 965905 966947.8 469708 485375.2
sc-ldoor 68659 68718.7 70073 70123.5 67557 68547.1 68862 68962 79892 80020.7 66770 66846
sc-msdoor 22163 22192.2 22801 22840.9 21169 21542.3 21437 21484.2 20912 20939.4 21481 21517.8
sc-pwtk 6030 6046.4 6360 6389.7 4959 5065.2 5099 5126.8 5133 5164.1 4475 4528
sc-rel9 259632 260231.6 4237296 4262802 2110005 4090520.2 5379337 5388189.8 5382628 5392480.1 241046 241947
sc-shipsec1 12563 12594.7 13580 13659.1 10834 11022.9 10083 10120.5 9696 9743.6 10392 10443.8
sc-shipsec5 16791 16816.3 17606 17695.6 14918 15161.4 14178 14297.3 13733 13796.5 14533 14586.8
socfb-A-anon 1669228 1674202.7 2319836 2323819.5 2141665 2278578.5 2483752 2486549.9 2497057 2499903 1337702 1338843.8
socfb-B-anon 1606632 1613011.3 2271052 2276031.7 2056992 2225046.4 2428580 2431129.6 2438709 2441440.2 1248897 1249610.4
socfb-uci-uni N/A N/A N/A N/A 55837483 55860922 57147925 57154643.7 57162057 57167604.5 8879317 8879940.5
Tab.5  
Instance GRASP+PC MEMETIC drMIDS ILPS2 ILPS3 MAE-PB
min avg min avg min avg min avg min avg min avg
soc-buzznet 16427 41491.8 48972 60200.2 56933 60608.9 2571 2571.7 2573 2575.9 1078 2463.8
soc-delicious 257047 260709.1 375432 377337.6 229828 244509.8 410459 411412.9 400696 401662.7 213040 213148.9
soc-digg 464502 469247.5 592137 595356.4 541850 575911.8 620232 622005.9 628060 629787.3 360827 361056.8
soc-dogster 178127 187041.5 218847 222195.1 212787 220116.4 236456 236952.1 246708 247404.2 147137 147220.1
soc-flickr 238561 239177.3 285952 286537.5 228393 231800.9 315535 316061.4 329196 329659.9 225706 225986.8
soc-flickr-und 757567 759852.7 962166 963430.1 793220 847844.7 1094213 1094930.9 1133992 1134654 712106 712459.5
soc-flixster 1797967 1804468.4 2283393 2289703.9 2112006 2242842.7 2349351 2355308.1 2351118 2357745.3 1446495 1447358.9
soc-FourSquare 261585 263522.1 421911 423272.6 309284 343367.9 497910 499487.8 492209 493759.3 254246 263147
soc-lastfm 711394 715802.3 991546 994550.3 808133 919647.7 1049636 1055349.3 1045676 1051463 606769 623970.3
soc-livejournal 1556556 1557169.2 1701200 1702474.8 1569372 1610680.8 1763810 1764824.7 1888537 1889859.7 1457679 1458202
soc-livejournal-user-groups N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 3935557 3963727.7
soc-LiveMocha 27818 29799.8 46246 47163.3 25173 27104.9 19308 19326.2 19286 19312.7 19164 19393.4
soc-ljournal-2008 2178908 2180256.8 2392237 2393624.1 2245160 2304426.9 2471838 2472824.1 2625367 2627141.1 2017074 2017617.9
soc-orkut 487314 490131.8 547962 548734.1 511063 523932 571977 571977 N/A N/A 420253 420702.4
soc-orkut-dir 496889 498147.2 558154 559021.8 528996 537980.2 N/A N/A N/A N/A 422147 422761
soc-pokec 479023 479918.3 541129 541790.1 460459 473097.7 579862 580476.3 624805 625335.8 444054 444497.7
soc-sinaweibo N/A N/A N/A N/A N/A N/A 58189158 58189158 N/A N/A 41348112 41348903.3
soc-twitter-higgs 136308 148028.7 187727 197706.7 194853 199584.3 64645 64781.9 64783 64838.1 64637 64689.4
soc-youtube 249474 252195.9 291048 294687.6 249714 263709.5 305632 306098.5 321759 322149.3 210109 210181.5
soc-youtube-snap 621236 628307.3 734256 736466.4 668462 696936.7 771399 772205.9 801033 801966.7 516764 516956.6
tech-as-skitter 504141 507896.5 807360 813966.7 700698 790524.5 999796 1001816.8 1044493 1046569 425378 425765.9
tech-ip N/A N/A N/A N/A N/A N/A 34033 34164.6 34033 34164.6 33944 34067
twitter_mpi N/A N/A N/A N/A N/A N/A 8636449 8647646.9 8674533 8687284.6 5517459 5518646.9
web-arabic-2005 29252 29478.1 35100 35346.4 25884 26176.7 26039 26233.0 25745 25951.4 24497 25286.2
web-baidu-baike 1041922 1097314.7 1281323 1281990.2 1279905 1285277.7 1339271 1340662.7 1388596 1389907.3 892104 892318.7
web-it-2004 67874 68537.2 80077 80201.2 62662 64220.9 82375 83130.1 67453 67454.5 57896 60208.1
web-uk-2005 1723 1726 1728 1729.6 1429 1432.5 1452 1530.4 1452 1528 1427 1427
web-wikipedia_ link N/A N/A N/A N/A N/A N/A 1795791 1797987.3 1843338 1845944.2 620531 620718
web-wikipedia 2009 735795 737294.9 916510 918149.8 707187 761818.2 1032499 1033213 1097804 1098647.3 682229 682709.1
web-wikipedia-growth 558570 563152.9 690694 696448.4 700384 703726.3 773754 774938.2 833111 834491.2 446746 446931
wikipedia_ link_en 24832213 24891236.9 29251560 26489886.4 26441864 26526564.8 26674651 26679001.5 26682855 26687149.9 24841764 24901940.4
Tab.6  
Fig.2  
Fig.3  
Benchmark #instance vs. MAE-PB1 vs. MAE-PB2 vs. MAE-PB3 vs. MAE-PB4 vs. MAE-PB5
#better #worse #better #worse #better #worse #better #worse #better #worse
DIMACS 61 3 0 2 0 2 0 2 0 1 0
BHOSLIB 41 3 1 17 0 10 0 9 0 4 1
massive graph 65 45 20 36 19 35 19 43 22 40 25
Total 167 51 21 55 19 47 19 54 22 45 26
Tab.7  
  
  
  
  
  
  
  
1 H, Samuel W, Zhuang B Preiss . DTN based dominating set routing for MANET in heterogeneous wireless networking. Mobile Networks and Applications, 2009, 14( 2): 154–164
2 M, Abseher N, Musliu S Woltran . Improving the efficiency of dynamic programming on tree decompositions via machine learning. Journal of Artificial Intelligence Research, 2017, 58: 829–858
3 B, Aoun R, Boutaba Y, Iraqi G Kenward . Gateway placement optimization in wireless mesh networks with QoS constraints. IEEE Journal on Selected Areas in Communications, 2006, 24( 11): 2127–2136
4 A, Potluri C Bhagvati . Novel morphological algorithms for dominating sets on graphs with applications to image analysis. In: Proceedings of the 15th International Workshop on Combinatorial Image Analysis. 2012, 249–262
5 A A, Alofairi E, Mabrouk I E Elsemman . Constraint-based models for dominating protein interaction networks. IET Systems Biology, 2021, 15( 5): 148–162
6 Y, Jin J K Hao . General swap-based multiple neighborhood tabu search for the maximum independent set problem. Engineering Applications of Artificial Intelligence, 2015, 37: 20–33
7 V, Boginski S, Butenko P M Pardalos . Statistical analysis of financial networks. Computational Statistics & Data Analysis, 2005, 48( 2): 431–443
8 T, Etzion P R J Ostergard . Greedy and heuristic algorithms for codes and colorings. IEEE Transactions on Information Theory, 1998, 44( 1): 382–388
9 I F, Akyildiz I H Kasimoglu . Wireless sensor and actor networks: research challenges. Ad Hoc Networks, 2004, 2( 4): 351–367
10 B, McLaughlan K Akkaya . Coverage-based clustering of wireless sensor and actor networks. In: Proceedings of IEEE International Conference on Pervasive Services. 2007, 45–54
11 K, Erciyes O, Dagdeviren D, Cokuslu D Ozsoyeller . Graph theoretic clustering algorithms in mobile ad hoc networks and wireless sensor networks. Applied and Computational Mathematics, 2007, 6( 2): 162–180
12 Chen Y, Liestman A, Liu J. Clustering algorithms for ad hoc wireless networks. Ad Hoc and Sensor Networks, 2004, 28: 76−90
13 C R, Lin M Gerla . Adaptive clustering for mobile wireless networks. IEEE Journal on Selected areas in Communications, 1997, 15( 7): 1265–1275
14 Basagni S. Distributed clustering for ad hoc networks. In: Proceedings of the 4th International Symposium on Parallel Architectures, Algorithms, and Networks. 1999, 310–315
15 G, Chen F G, Nocetti J S, Gonzalez I Stojmenovic . Connectivity based k-hop clustering in wireless networks. In: Proceedings of the 35th Annual Hawaii International Conference on System Sciences. 2002, 2450–2459
16 M R, Garey D S Johnson . Computers and Intractability: A Guide to the Theory of NP-Completeness. New York: W. H. Freeman, 1979
17 S, Gaspers M Liedloff . A branch-and-reduce algorithm for finding a minimum independent dominating set in graphs. In: Proceedings of the 32nd International Workshop on Graph-Theoretic Concepts in Computer Science. 2006, 78–89
18 C, Liu Y Song . Exact algorithms for finding the minimum independent dominating set in graphs. In: Proceedings of the 17th International Symposium on Algorithms and Computation. 2006, 439–448
19 N, Bourgeois F D, Croce B, Escoffier V T Paschos . Fast algorithms for min independent dominating set. Discrete Applied Mathematics, 2013, 161(4–5): 558–572
20 Y, Liang H, Huang Z Cai . PSO-ACSC: a large-scale evolutionary algorithm for image matting. Frontiers of Computer Science, 2020, 14( 6): 146321
21 Y, Wang S, Cai J, Chen M Yin . SCCWalk: an efficient local search algorithm and its improvements for maximum weight clique problem. Artificial Intelligence, 2020, 280: 103230
22 C, Chen L, Gao X, Xie Z Wang . Enjoy the most beautiful scene now: a memetic algorithm to solve two-fold time-dependent arc orienteering problem. Frontiers of Computer Science, 2020, 14( 2): 364–377
23 P, He J K, Hao Q Wu . Grouping memetic search for the colored traveling salesmen problem. Information Sciences, 2021, 570: 689–707
24 Wang Y, Li X, Wong K C, Chang Y, Yang S. Evolutionary multiobjective clustering algorithms with ensemble for patient stratification. IEEE Transactions on Cybernetics, 2021, doi:
25 L, Liu Y Du . An improved multi-objective evolutionary algorithm for computation offloading in the multi-cloudlet environment. Frontiers of Computer Science, 2021, 15( 5): 155503
26 Y, Wang R, Li Y, Zhou M Yin . A path cost-based grasp for minimum independent dominating set problem. Neural Computing and Applications, 2017, 28( S1): 143–151
27 Y, Wang J, Chen H, Sun M Yin . A memetic algorithm for minimum independent dominating set problem. Neural Computing and Applications, 2018, 30( 8): 2519–2529
28 K Haraguchi . An efficient local search for the minimum independent dominating set problem. In: Proceedings of the 17th International Symposium on Experimental Algorithms. 2018, 13
29 Y, Wang C, Li M Yin . A two phase removing algorithm for minimum independent dominating set problem. Applied Soft Computing, 2020, 88: 105949
30 J, Ding Z, Lü C M, Li L, Shen L, Xu F Glover . A two-individual based evolutionary algorithm for the flexible job shop scheduling problem. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2019, 280
31 L, Moalic A Gondran . Variations on memetic algorithms for graph coloring problems. Journal of Heuristics, 2018, 24( 1): 1–24
32 B, Peng Y, Zhang T C E, Cheng Z, Lü A P Punnen . A two-individual based path-relinking algorithm for the satellite broadcast scheduling problem. Knowledge-Based Systems, 2020, 196: 105774
33 Zheng P, Zhang P, Wang J, Zhang J, Yang C, Jin Y. A data-driven robust optimization method for the assembly job-shop scheduling problem under uncertainty. International Journal of Computer Integrated Manufacturing, 2020, doi:
34 Q, Sun J, Dou C Zhang . Robust optimization of flow shop scheduling with uncertain processing time. In: Proceedings of 2020 IEEE International Conference on Mechatronics and Automation. 2020, 512–517
35 Y, Wang Z, Lü A P Punnen . A fast and robust heuristic algorithm for the minimum weight vertex cover problem. IEEE Access, 2021, 9: 31932–31945
36 Z, Xu K, He C M Li . An iterative path-breaking approach with mutation and restart strategies for the max-sat problem. Computers & Operations Research, 2019, 104: 49–58
37 F Glover . Tabu search—part I. ORSA Journal on Computing, 1989, 1( 3): 190–206
38 T A, Feo M G C Resende . Greedy randomized adaptive search procedures. Journal of Global Optimization, 1995, 6( 2): 109–133
39 M A, Trick D S Johnson . Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, October 11-13, 1993. Boston: American Mathematical Society, 1996
40 Y, Zhou J K, Hao B Duval . Reinforcement learning based local search for grouping problems: A case study on graph coloring. Expert Systems with Applications, 2016, 64: 412–422
41 Y, Wang J K, Hao F, Glover Z, Lü Q Wu . Solving the maximum vertex weight clique problem via binary quadratic programming. Journal of Combinatorial Optimization, 2016, 32( 2): 531–549
42 Xu K, Boussemart F, Hemery F, Lecoutre C. Random constraint satisfaction: easy generation of hard (satisfiable) instances. Artificial Intelligence, 2007, 171(8–9): 514–534
43 S, Cai K, Su C, Luo A Sattar . NuMVC: an efficient local search algorithm for minimum vertex cover. Journal of Artificial Intelligence Research, 2013, 46: 687–716
44 Q, Wu J K Hao . A review on algorithms for maximum clique problems. European Journal of Operational Research, 2015, 242( 3): 693–709
45 Rossi R A, Ahmed N K. The network data repository with interactive graph analytics and visualization. In: Proceedings of the 49th AAAI Conference on Artificial Intelligence. 2015, 4292–4293
46 S Cai . Balance between complexity and quality: local search for minimum vertex cover in massive graphs. In: Proceedings of the 24th International Conference on Artificial Intelligence. 2015, 747–753
47 Wang Y, Cai S, Yin M. Two efficient local search algorithms for maximum weight clique problem. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence. 2016, 805–811
48 M, López-Ibáñez J, Dubois-Lacoste L P, Cáceres M, Birattari T Stützle . The irace package: iterated racing for automatic algorithm configuration. Operations Research Perspectives, 2016, 3: 43–58
49 M Friedman . The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association, 1937, 32( 200): 675–701
50 S, Garcia F Herrera . An extension on "statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons. Journal of Machine Learning Research, 2008, 9( 12): 2677–2694
51 Luo C, Cai S, Wu W, Su K. Double configuration checking in stochastic local search for satisfiability. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence. 2014, 2703–2709
52 C, Luo S, Cai W, Wu Z, Jie K Su . CCLS: an efficient local search algorithm for weighted maximum satisfiability. IEEE Transactions on Computers, 2015, 64( 7): 1830–1843
53 C, Luo S, Cai K, Su W Huang . CCEHC: an efficient local search algorithm for weighted partial maximum satisfiability. Artificial Intelligence, 2017, 243: 26–44
54 X, Liu J, Liang D Y, Liu R, Chen S M Yuan . Weapon-target assignment in unreliable peer-to-peer architecture based on adapted artificial bee colony algorithm. Frontiers of Computer Science, 2022, 16( 1): 161103
55 C, Qian J C, Shi K, Tang Z H Zhou . Constrained monotone k-submodular function maximization using multiobjective evolutionary algorithms with theoretical guarantee. IEEE Transactions on Evolutionary Computation, 2018, 22( 4): 595–608
56 C, Luo H H, Hoos S, Cai Q, Lin H, Zhang D Zhang . Local search with efficient automatic configuration for minimum vertex cover. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence. 2019, 1297–1304
57 Z, Lei S, Cai C, Luo H Hoos . Efficient local search for pseudo Boolean optimization. In: Proceedings of the 24th International Conference on Theory and Applications of Satisfiability Testing. 2021, 332–348
[1] FCS-22023-OF-SP_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed