Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

邮发代号 80-970

2019 Impact Factor: 1.275

Frontiers of Computer Science  2024, Vol. 18 Issue (2): 182903   https://doi.org/10.1007/s11704-023-2490-5
  本期目录
Identification of human microRNA-disease association via low-rank approximation-based link propagation and multiple kernel learning
Yizheng WANG1,2, Xin ZHANG3, Ying JU4, Qing LIU5, Quan ZOU1,2, Yazhou ZHANG6, Yijie DING2(), Ying ZHANG5()
1. Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054 , China
2. Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China
3. Beidahuang Industry Group General Hospital, Harbin 150088, China
4. School of Informatics, Xiamen University, Xiamen 361005, China
5. Department of Anesthesiology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou 646000, China
6. Software Engineering College, Zhengzhou University of Light Industry, Zhengzhou 450002, China
 全文: PDF(6402 KB)   HTML
Abstract

Numerous studies have demonstrated that human microRNAs (miRNAs) and diseases are associated and studies on the microRNA-disease association (MDA) have been conducted. We developed a model using a low-rank approximation-based link propagation algorithm with Hilbert–Schmidt independence criterion-based multiple kernel learning (HSIC-MKL) to solve the problem of the large time commitment and cost of traditional biological experiments involving miRNAs and diseases, and improve the model effect. We constructed three kernels in miRNA and disease space and conducted kernel fusion using HSIC-MKL. Link propagation uses matrix factorization and matrix approximation to effectively reduce computation and time costs. The results of the experiment show that the approach we proposed has a good effect, and, in some respects, exceeds what existing models can do.

Key wordshuman miRNA-disease association    multiple kernel learning    link propagation    miRNA similarity    disease similarity
收稿日期: 2022-07-29      出版日期: 2023-04-13
Corresponding Author(s): Yijie DING,Ying ZHANG   
 引用本文:   
. [J]. Frontiers of Computer Science, 2024, 18(2): 182903.
Yizheng WANG, Xin ZHANG, Ying JU, Qing LIU, Quan ZOU, Yazhou ZHANG, Yijie DING, Ying ZHANG. Identification of human microRNA-disease association via low-rank approximation-based link propagation and multiple kernel learning. Front. Comput. Sci., 2024, 18(2): 182903.
 链接本文:  
https://academic.hep.com.cn/fcs/CN/10.1007/s11704-023-2490-5
https://academic.hep.com.cn/fcs/CN/Y2024/V18/I2/182903
Fig.1  
Fig.2  
Fig.3  
SpaceKernelDescription
MiRNAKm,1Sequence information of miRNA
Km,2Functional information of miRNA
Km,3Gaussian interaction profiles for miRNA
DiseaseKd,1Semantic information of disease
Kd,2Functional information of disease
Kd,3Gaussian interaction profiles for disease
Tab.1  
  
Fig.4  
ModelAUCAUPR
HSIC-MKL + LP-S0.98000.8374
HSIC-MKL + LP-P0.97810.8144
CKA-MKL + LP-S0.97900.8136
CKA-MKL + LP-P0.97680.7963
Mean weighted + LP-S0.97610.8074
Mean weighted + LP-P0.97380.7849
Tab.2  
Fig.5  
Fig.6  
ModelAUCAUPR
HSIC-MKL+LP-S (our method)0.98000.8374
CKA-HGRTMF0.97750.7712
CKA-MKL+HGBLM0.96800.7291
MDA-SKF0.9557?
FKL-Spa-LapRLS0.9535?
LRSSLMDA0.9181?
PBMDA0.9172?
MCMDA0.8767?
NCPMDA0.8763?
RLSMDA0.8569?
HDMP0.8342?
WBSMDA0.8185?
Tab.3  
ModelGlobal LOOCVLocal LOOCV
HSIC-MKL + LP-S (our method)0.98740.7800
CKA-MKL + HGBLM0.97150.8083
MDA-SKF0.95760.8356
FKL-Spa-LapRLS0.95630.8398
LRSSLMDA0.91780.8418
PBMDA0.91690.8341
MCMDA0.87490.7718
NCPMDA0.90730.8584
RLSMDA0.84260.6953
HDMP0.83660.7702
WBSMDA0.80300.8031
Tab.4  
ModelRunning time/s
HSIC-MKL11.50
CKA-MKL21.33
Mean weighted0.07
LP-S7.56
LP-P7.88
Tab.5  
  
  
  
  
  
  
  
  
1 H, Shi G, Zhang M, Zhou L, Cheng H, Yang J, Wang J, Sun Z Wang . Integration of multiple genomic and phenotype data to infer novel miRNA-disease associations. PLoS One, 2016, 11( 2): e0148521
2 R W, Carthew E J Sontheimer . Origins and mechanisms of miRNAs and siRNAs. Cell, 2009, 136( 4): 642–655
3 Y, Peng Y, Liu X Chen . Bioinformatics analysis reveals functions of MicroRNAs in rice under the drought stress. Current Bioinformatics, 2020, 15( 8): 927–936
4 A, Roehle K P, Hoefig D, Repsilber C, Thorns M, Ziepert K O, Wesche M, Thiere M, Loeffler W, Klapper M, Pfreundschuh A, Matolcsy H W, Bernd L, Reiniger H, Merz A C Feller . MicroRNA signatures characterize diffuse large B‐cell lymphomas and follicular lymphomas. British Journal of Haematology, 2008, 142( 5): 732–744
5 J P, Cogswell J, Ward I A, Taylor M, Waters Y, Shi B, Cannon K, Kelnar J, Kemppainen D, Brown C, Chen R K, Prinjha J C, Richardson A M, Saunders A D, Roses C A Richards . Identification of miRNA changes in Alzheimer's disease brain and CSF yields putative biomarkers and insights into disease pathways. Journal of Alzheimer's Disease, 2008, 14( 1): 27–41
6 A, Caporali M, Meloni C, Völlenkle D, Bonci G B, Sala-Newby R, Addis G, Spinetti S, Losa R, Masson A H, Baker R, Agami Sage C, Le G, Condorelli P, Madeddu F, Martelli C Emanueli . Deregulation of microRNA-503 contributes to diabetes mellitus−induced impairment of endothelial function and reparative angiogenesis after limb ischemia. Circulation, 2011, 123( 3): 282–291
7 Y, Hu Y, Zhang H, Zhang S, Gao L, Wang T, Wang Z, Han B, Sun G Liu . Cognitive performance protects against Alzheimer’s disease independently of educational attainment and intelligence. Molecular Psychiatry, 2022, 27(10): 4297−4306
8 Anonymous. 2021 Alzheimer’s disease facts and figures. Alzheimer’s & Dement, 2021, 17(3): 327−406
9 Y, Hu J, Sun Y, Zhang H, Zhang S, Gao T, Wang Z, Han L, Wang B L, Sun G Liu . rs1990622 variant associates with Alzheimer's disease and regulates TMEM106B expression in human brain tissues. BMC Medicine, 2021, 19( 1): 11
10 Y, Hu H, Zhang B, Liu S, Gao T, Wang Z, Han Genomics of Alzheimer’s Project (IGAP), International X, Ji G Liu . rs34331204 regulates TSPAN13 expression and contributes to Alzheimer's disease with sex differences. Brain, 2020, 143( 11): e95
11 D, Bhaumik G K, Scott S, Schokrpur C K, Patil J, Campisi C C Benz . Expression of microRNA-146 suppresses NF-κB activity with reduction of metastatic potential in breast cancer cells. Oncogene, 2008, 27( 42): 5643–5647
12 N, Wang Y, Li S, Liu L, Gao C, Liu X, Bao P Xue . Analysis and validation of differentially expressed MicroRNAs with their target genes involved in GLP-1RA facilitated osteogenesis. Current Bioinformatics, 2021, 16( 7): 928–942
13 Y, Hu S, Qiu L Cheng . Integration of multiple-Omics data to analyze the population-specific differences for coronary artery disease. Computational and Mathematical Methods in Medicine, 2021, 2021: 7036592
14 Y, Hu Y, Zhang H, Zhang S, Gao L, Wang T, Wang Z, Han Genomics of Alzheimer's Project (IGAP), International G Liu . Mendelian randomization highlights causal association between genetically increased C-reactive protein levels and reduced Alzheimer's disease risk. Alzheimer’s & Dement, 2022, 18( 10): 2003–2006
15 W, Tang S, Wan Z, Yang A E, Teschendorff Q Zou . Tumor origin detection with tissue-specific miRNA and DNA methylation markers. Bioinformatics, 2018, 34( 3): 398–406
16 J P, Sarkar I, Saha A, Sarkar U Maulik . Machine learning integrated ensemble of feature selection methods followed by survival analysis for predicting breast cancer subtype specific miRNA biomarkers. Computers in Biology and Medicine, 2021, 131: 104244
17 Q, Zhu Y, Fan X Pan . Fusing multiple biological networks to effectively predict miRNA-disease associations. Current Bioinformatics, 2021, 16( 3): 371–384
18 Y, Zhang G, Duan C, Yan H, Yi F X, Wu J Wang . MDAPlatform: a component-based platform for constructing and assessing miRNA-disease association prediction methods. Current Bioinformatics, 2021, 16( 5): 710–721
19 X, Chen C C, Zhu J Yin . Ensemble of decision tree reveals potential miRNA-disease associations. PLoS Computational Biology, 2019, 15( 7): e1007209
20 H, Fu F, Huang X, Liu Y, Qiu W Zhang . MVGCN: data integration through multi-view graph convolutional network for predicting links in biomedical bipartite networks. Bioinformatics, 2022, 38( 2): 426–434
21 G, Zhang M, Li H, Deng X, Xu X, Liu W Zhang . SGNNMD: signed graph neural network for predicting deregulation types of miRNA-disease associations. Briefings in Bioinformatics, 2022, 23( 1): bbab464
22 F, Huang X, Yue Z, Xiong Z, Yu S, Liu W Zhang . Tensor decomposition with relational constraints for predicting multiple types of microRNA-disease associations. Briefings in Bioinformatics, 2021, 22( 3): bbaa140
23 X, Lu Y, Gao Z, Zhu L, Ding X, Wang F, Liu J Li . A constrained probabilistic matrix decomposition method for predicting miRNA-disease associations. Current Bioinformatics, 2021, 16( 4): 524–533
24 W, Lan Y, Dong Q, Chen J, Liu J, Wang Y P P, Chen S Pan . IGNSCDA: predicting CircRNA-disease associations based on improved graph convolutional network and negative sampling. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19( 6): 3530–3538
25 W, Peng Z, Che W, Dai S, Wei W Lan . Predicting miRNA-disease associations from miRNA-gene-disease heterogeneous network with multi-relational graph convolutional network model. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, doi: 10.1109/TCBB.2022.3187739
26 X, Chen C, Yan X, Zhang Z H, You L, Deng Y, Liu Y, Zhang Q Dai . WBSMDA: within and between score for MiRNA-disease association prediction. Scientific Reports, 2016, 6( 1): 21106
27 X, Chen J, Yin J, Qu L Huang . MDHGI: matrix decomposition and heterogeneous graph inference for miRNA-disease association prediction. PLoS Computational Biology, 2018, 14( 8): e1006418
28 Y, Ding L, Jiang J, Tang F Guo . Identification of human microRNA-disease association via hypergraph embedded bipartite local model. Computational Biology and Chemistry, 2020, 89: 107369
29 X, Chen L, Wang J, Qu N N, Guan J Q Li . Predicting miRNA−disease association based on inductive matrix completion. Bioinformatics, 2018, 34( 24): 4256–4265
30 X, Chen L G, Sun Y Zhao . NCMCMDA: miRNA−disease association prediction through neighborhood constraint matrix completion. Briefings in Bioinformatics, 2021, 22( 1): 485–496
31 L, Fu Q Peng . A deep ensemble model to predict miRNA-disease association. Scientific Reports, 2017, 7( 1): 14482
32 X, Zeng N, Ding A, Rodríguez-Patón Q Zou . Probability-based collaborative filtering model for predicting gene−disease associations. BMC Medical Genomics, 2017, 10( S5): 76
33 X, Zeng L, Liu L Y, Lü Q Zou . Prediction of potential disease-associated microRNAs using structural perturbation method. Bioinformatics, 2018, 34( 14): 2425–2432
34 X, Zeng W, Wang G, Deng J, Bing Q Zou . Prediction of potential disease-associated MicroRNAs by using neural networks. Molecular Therapy Nucleic Acids, 2019, 16: 566–575
35 X, Chen M X, Liu G Y Yan . RWRMDA: predicting novel human microRNA−disease associations. Molecular BioSystems, 2012, 8( 10): 2792–2798
36 Laarhoven T, Van S B, Nabuurs E Marchiori . Gaussian interaction profile kernels for predicting drug−target interaction. Bioinformatics, 2011, 27( 21): 3036–3043
37 C, Gu B, Liao X, Li K Li . Network consistency projection for human miRNA-disease associations inference. Scientific Reports, 2016, 6: 36054
38 P, Tiwari S, Dehdashti A K, Obeid P, Marttinen P Bruza . Kernel method based on non-linear coherent states in quantum feature space. Journal of Physics A: Mathematical and Theoretical, 2022, 55( 35): 355301
39 Y, Li C, Qiu J, Tu B, Geng J, Yang T, Jiang Q Cui . HMDD v2. 0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Research, 2014, 42( D1): D1070–D1074
40 X, Chen T H, Li Y, Zhao C C, Wang C C Zhu . Deep-belief network for predicting potential miRNA-disease associations. Briefings in Bioinformatics, 2021, 22( 3): bbaa186
41 C C, Wang T H, Li L, Huang X Chen . Prediction of potential miRNA−disease associations based on stacked autoencoder. Briefings in Bioinformatics, 2022, 23( 2): bbac021
42 A, Kozomara S Griffiths-Jones . miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Research, 2014, 42( D1): D68–D73
43 D, Wang J, Wang M, Lu F, Song Q Cui . Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases. Bioinformatics, 2010, 26( 13): 1644–1650
44 C C, Zhu C C, Wang Y, Zhao M, Zuo X Chen . Identification of miRNA−disease associations via multiple information integration with Bayesian ranking. Briefings in Bioinformatics, 2021, 22( 6): bbab302
45 Y, Zhao X, Chen J Yin . Adaptive boosting-based computational model for predicting potential miRNA-disease associations. Bioinformatics, 2019, 35( 22): 4730–4738
46 H J, Lowe G O Barnett . Understanding and using the medical subject headings (MeSH) vocabulary to perform literature searches. JAMA, 1994, 271( 14): 1103–1108
47 J, Luo Q, Xiao C, Liang P Ding . Predicting MicroRNA-disease associations using Kronecker regularized least squares based on heterogeneous omics data. IEEE Access, 2017, 5: 2503–2513
48 W, Lan J, Wang M, Li J, Liu F X, Wu Y Pan . Predicting microRNA-disease associations based on improved microRNA and disease similarities. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 15( 6): 1774–1782
49 I, Lee U M, Blom P I, Wang J E, Shim E M Marcotte . Prioritizing candidate disease genes by network-based boosting of genome-wide association data. Genome Research, 2011, 21( 7): 1109–1121
50 L, Cheng G, Wang J, Li T, Zhang P, Xu Y Wang . SIDD: a semantically integrated database towards a global view of human disease. PLoS One, 2013, 8( 10): e75504
51 A, Gretton O, Bousquet A, Smola B Schölkopf . Measuring statistical dependence with Hilbert-Schmidt norms. In: Proceedings of the 16th International Conference on Algorithmic Learning Theory, 2005, 63–77
52 T, Wang W Li . Kernel learning and optimization with Hilbert−Schmidt independence criterion. International Journal of Machine Learning and Cybernetics, 2018, 9( 10): 1707–1717
53 J, Xuan J, Lu Z, Yan G Zhang . Bayesian deep reinforcement learning via deep kernel learning. International Journal of Computational Intelligence Systems, 2018, 12( 1): 164–171
54 T, Wang J, Lu G Zhang . Two-stage fuzzy multiple kernel learning based on Hilbert−Schmidt independence criterion. IEEE Transactions on Fuzzy Systems, 2018, 26( 6): 3703–3714
55 M, Gönen E Alpaydın . Multiple kernel learning algorithms. The Journal of Machine Learning Research, 2011, 12: 2211–2268
56 L, Jiang Y, Ding J, Tang F Guo . MDA-SKF: similarity kernel fusion for accurately discovering miRNA-disease association. Frontiers in Genetics, 2018, 9: 618
57 D, Zhou O, Bousquet T N, Lal J, Weston B Schölkopf . Learning with local and global consistency. In: Proceedings of the 16th International Conference on Neural Information Processing Systems, 2003, 321–328
58 X, Zhu Z, Ghahramani J Lafferty . Semi-supervised learning using Gaussian fields and harmonic functions. In: Proceedings of the 20th International Conference on Machine Learning (ICML-03), 2003, 912–919
59 R, Raymond H Kashima . Fast and scalable algorithms for semi-supervised link prediction on static and dynamic graphs. In: Proceedings of 2010 European Conference on Machine Learning and Knowledge Discovery in Databases, 2010, 131–147
60 A J Laub . Matrix Analysis for Scientists and Engineers. Philadelphia: SIAM, 2005
61 H, Kashima T, Kato Y, Yamanishi M, Sugiyama K Tsuda . Link propagation: a fast semi-supervised learning algorithm for link prediction. In: Proceedings of the 9th SIAM International Conference on Data Mining, 2009, 1093–1104
62 G H, Golub A, Hoffman G W Stewart . A generalization of the Eckart-Young-Mirsky matrix approximation theorem. Linear Algebra and its Applications, 1987, 88–89: 317-327
63 C M, Bishop N M Nasrabadi . Pattern Recognition and Machine Learning. New York: Springer, 2006
64 S V N, Vishwanathan K M, Borgwardt N N Schraudolph . Fast computation of graph kernels. In: Proceedings of the 19th International Conference on Neural Information Processing Systems. 2006
65 L, Jiang Y, Xiao Y, Ding J, Tang F Guo . FKL-Spa-LapRLS: an accurate method for identifying human microRNA-disease association. BMC Genomics, 2018, 19( S10): 911
66 Y, Ding P, Tiwari Q, Zou F, Guo H M Pandey . C-loss based higher order fuzzy inference systems for identifying DNA N4-methylcytosine sites. IEEE Transactions on Fuzzy Systems, 2022, 30( 11): 4754–4765
67 X, Chen D, Xie L, Wang Q, Zhao Z H, You H Liu . BNPMDA: bipartite network projection for MiRNA−disease association prediction. Bioinformatics, 2018, 34( 18): 3178–3186
68 N, Cristianini J, Shawe-Taylor A, Elisseeff J Kandola . On kernel-target alignment. In: Proceedings of the 14th International Conference on Neural Information Processing Systems, 2001, 367–373
69 C, Cortes M, Mohri A Rostamizadeh . Algorithms for learning kernels based on centered alignment. The Journal of Machine Learning Research, 2012, 13( 1): 795–828
70 Y, Lu L, Wang J, Lu J, Yang C Shen . Multiple kernel clustering based on centered kernel alignment. Pattern Recognition, 2014, 47( 11): 3656–3664
71 J, Hu Y, Li M, Zhang X, Yang H B, Shen D J Yu . Predicting protein-DNA binding residues by weightedly combining sequence-based features and boosting multiple SVMs. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2017, 14( 6): 1389–1398
72 H, Wang J, Tang Y, Ding F Guo . Exploring associations of non-coding RNAs in human diseases via three-matrix factorization with hypergraph-regular terms on center kernel alignment. Briefings in Bioinformatics, 2021, 22( 5): bbaa409
73 X, Chen L Huang . LRSSLMDA: laplacian regularized sparse subspace learning for MiRNA-disease association prediction. PLoS Computational Biology, 2017, 13( 12): e1005912
74 Z H, You Z A, Huang Z, Zhu G Y, Yan Z W, Li Z, Wen X Chen . PBMDA: a novel and effective path-based computational model for miRNA-disease association prediction. PLoS Computational Biology, 2017, 13( 3): e1005455
75 J Q, Li Z H, Rong X, Chen G Y, Yan Z H You . MCMDA: matrix completion for MiRNA-disease association prediction. Oncotarget, 2017, 8( 13): 21187–21199
76 X, Chen G Y Yan . Semi-supervised learning for potential human microRNA-disease associations inference. Scientific Reports, 2014, 4: 5501
77 P, Xuan K, Han M, Guo Y, Guo J, Li J, Ding Y, Liu Q, Dai J, Li Z, Teng Y Huang . Prediction of microRNAs associated with human diseases based on weighted k most similar neighbors. PLoS One, 2013, 8( 8): e70204
78 X, Chen D, Xie Q, Zhao Z H You . MicroRNAs and complex diseases: from experimental results to computational models. Briefings in Bioinformatics, 2019, 20( 2): 515–539
[1] FCS-22490-OF-YW_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed