Blockchain based federated learning for intrusion detection for Internet of Things
Nan SUN1, Wei WANG2,3, Yongxin TONG4, Kexin LIU2,3()
1. School of Cyber Science and Technology, Beihang University, Beijing 100191, China 2. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China 3. Zhongguancun Laboratory, Beijing 100094, China 4. School of Computer Science and Engineering, Beihang University, Beijing 100191, China
In Internet of Things (IoT), data sharing among different devices can improve manufacture efficiency and reduce workload, and yet make the network systems be more vulnerable to various intrusion attacks. There has been realistic demand to develop an efficient intrusion detection algorithm for connected devices. Most of existing intrusion detection methods are trained in a centralized manner and are incapable to identify new unlabeled attack types. In this paper, a distributed federated intrusion detection method is proposed, utilizing the information contained in the labeled data as the prior knowledge to discover new unlabeled attack types. Besides, the blockchain technique is introduced in the federated learning process for the consensus of the entire framework. Experimental results are provided to show that our approach can identify the malicious entities, while outperforming the existing methods in discovering new intrusion attack types.
. [J]. Frontiers of Computer Science, 2024, 18(5): 185328.
Nan SUN, Wei WANG, Yongxin TONG, Kexin LIU. Blockchain based federated learning for intrusion detection for Internet of Things. Front. Comput. Sci., 2024, 18(5): 185328.
X, Li Z, Hu M, Xu Y, Wang J Ma . Transfer learning based intrusion detection scheme for internet of vehicles. Information Sciences, 2021, 547: 119–135
2
M, Razian M, Fathian H, Wu A, Akbari R Buyya . SAIoT: scalable anomaly-aware services composition in CloudIoT environments. IEEE Internet of Things Journal, 2021, 8( 5): 3665–3677
3
S, Deng H, Zhao W, Fang J, Yin S, Dustdar Y A Zomaya . Edge intelligence: the confluence of edge computing and artificial intelligence. IEEE Internet of Things Journal, 2020, 7( 8): 7457–7469
4
D, Jiang Y, Song Y, Tong Y, Wu W, Zhao Q, Xu Q Yang . Federated topic modeling. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management. 2019, 1071–1080
5
V, Mothukuri P, Khare M R, Parizi S, Pouriyeh A, Dehghantanha G Srivastava . Federated-learning-based anomaly detection for IoT security attacks. IEEE Internet of Things Journal, 2022, 9( 4): 2545–2554
6
T, Song Y, Tong S Wei . Profit allocation for federated learning. In: Proceedings of 2019 IEEE International Conference on Big Data. 2019, 2577–2586
7
Q, Wu X, Chen Z, Zhou J Zhang . FedHome: cloud-edge based personalized federated learning for in-Home health monitoring. IEEE Transactions on Mobile Computing, 2022, 21( 8): 2818–2832
8
O, Alkadi N, Moustafa B, Turnbull K K R Choo . A deep blockchain framework-enabled collaborative intrusion detection for protecting IOT and cloud networks. IEEE Internet of Things Journal, 2021, 8( 12): 9463–9472
9
Y, Tong X, Pan Y, Zeng Y, Shi C, Xue Z, Zhou X, Zhang L, Chen K, Xu W Lv . Hu-Fu: efficient and secure spatial queries over data federation. Proceedings of the VLDB Endowment, 2022, 15( 6): 1159–1172
10
M, Abdel-Basset N, Moustafa H, Hawash I, Razzak K M, Sallam O M Elkomy . Federated intrusion detection in blockchain-based smart transportation systems. IEEE Transactions on Intelligent Transportation Systems, 2022, 23( 3): 2523–2537
11
H, Chen A S, Asif J, Park C C, Shen M Bennis . Robust blockchained federated Learning with model validation and proof-of-stake inspired consensus. In: Proceedings of AAAI 2021 Workshop - Towards Robust, Secure and Efficient Machine Learning. 2021
12
J, Ashraf D A, Bakhshi N, Moustafa H, Khurshid A, Javed A Beheshti . Novel deep learning-enabled LSTM autoencoder architecture for discovering anomalous events from intelligent transportation systems. IEEE Transactions on Intelligent Transportation Systems, 2021, 22( 7): 4507–4518
13
Y, Shi Y, Tong Z, Su D, Jiang Z, Zhou W Zhang . Federated topic discovery: a semantic consistent approach. IEEE Intelligent Systems, 2021, 36( 5): 96–103
14
Y, Wu N H, Dai H Wang . Convergence of blockchain and edge computing for secure and scalable IIoT critical infrastructures in industry 4. 0. IEEE Internet of Things Journal, 2021, 8( 4): 2300–2317
15
H, Liu S, Zhang P, Zhang X, Zhou X, Shao G, Pu Y Zhang . Blockchain and federated learning for collaborative intrusion detection in vehicular edge computing. IEEE Transactions on Vehicular Technology, 2021, 70( 6): 6073–6084
16
G, D’Angelo A, Castiglione F Palmieri . A cluster-based multidimensional approach for detecting attacks on connected vehicles. IEEE Internet of Things Journal, 2021, 8( 16): 12518–12527
17
J, Yang X, Chen S, Chen X, Jiang X Tan . Conditional variational auto-encoder and extreme value theory aided two-stage learning approach for intelligent fine-grained known/unknown intrusion detection. IEEE Transactions on Information Forensics and Security, 2021, 16: 3538–3553
18
L, Nie Y, Wu X, Wang L, Guo G, Wang X, Gao S Li . Intrusion detection for secure social internet of things based on collaborative edge computing: a generative adversarial network-based approach. IEEE Transactions on Computational Social Systems, 2022, 9( 1): 134–145
19
T E, Lin H, Xu H Zhang . Discovering new intents via constrained deep adaptive clustering with cluster refinement. In: Proceedings of the 34th AAAI Conference on Artificial Intelligence. 2020, 8360–8367
20
K, Han S A, Rebuffi S, Ehrhardt A, Vedaldi A Zisserman . Automatically discovering and learning new visual categories with ranking statistics. In: Proceedings of the 8th International Conference on Learning Representations. 2020
21
M, Castro B Liskov . Practical byzantine fault tolerance. In: Proceedings of the 3rd Symposium on Operating Systems Design and Implementation. 1999
22
S, Rezvy Y, Luo M, Petridis A, Lasebae T Zebin . An efficient deep learning model for intrusion classification and prediction in 5G and IoT networks. In: Proceedings of the 53rd Conference on Information Sciences and Systems. 2019, 1–6
23
D K, Dennis T, Li V Smith . Heterogeneity for the win: one-shot federated clustering. In: Proceedings of the 38th International Conference on Machine Learning. 2021
24
C, Kolias G, Kambourakis A, Stavrou S Gritzalis . Intrusion detection in 802. 11 networks: empirical evaluation of threats and a public dataset. IEEE Communications Surveys & Tutorials, 2016, 18( 1): 184–208
25
S, Han J, Pool J, Tran W J Dally . Learning both weights and connections for efficient neural networks. In: Proceedings of the 28th International Conference on Neural Information Processing Systems. 2015
26
G, Zhang F, Pan M, Dang’ana Y, Mao S, Motepalli S, Zhang H A Jacobsen . Reaching consensus in the Byzantine Empire: a comprehensive review of BFT consensus algorithms. 2022, arXiv preprint arXiv: 2204.03181
27
M, Alshammari J, Stavrakakis M Takatsuka . Refining a k-nearest neighbor graph for a computationally efficient spectral clustering. Pattern Recognition, 2021, 114: 107869
28
E, Barkhordar H M, Shirali-Shahreza R H Sadeghi . Clustering of Bank Customers using LSTM-based encoder-decoder and Dynamic Time Warping. 2021, arXiv preprint arXiv: 2110.11769
29
W, Guo K, Lin W Ye . Deep embedded K-means clustering. In: Proceedings of 2021 International Conference on Data Mining Workshops. 2021
30
H, Li X, Ye A, Imakura T Sakurai . Ensemble learning for spectral clustering. In: Proceedings of 2020 IEEE International Conference on Data Mining. 2020, 1094–1099
31
B, Xie X, Dong C Wang . An improved K-means clustering intrusion detection algorithm for wireless networks based on federated learning. Wireless Communications and Mobile Computing, 2021, 2021: 9322368