Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

邮发代号 80-970

2019 Impact Factor: 1.275

Frontiers of Computer Science  2024, Vol. 18 Issue (4): 184320   https://doi.org/10.1007/s11704-023-3131-8
  本期目录
Y-Tuning: an efficient tuning paradigm for large-scale pre-trained models via label representation learning
Yitao LIU, Chenxin AN, Xipeng QIU()
School of Computer Science, Fudan University, Shanghai 200433, China
 全文: PDF(2582 KB)   HTML
Abstract

With current success of large-scale pre-trained models (PTMs), how efficiently adapting PTMs to downstream tasks has attracted tremendous attention, especially for PTMs with billions of parameters. Previous work focuses on designing parameter-efficient tuning paradigms but needs to save and compute the gradient of the whole computational graph. In this paper, we propose Y-Tuning, an efficient yet effective paradigm to adapt frozen large-scale PTMs to specific downstream tasks. Y-Tuning learns dense representations for labels Y defined in a given task and aligns them to fixed feature representation. Without computing the gradients of text encoder at training phrase, Y-Tuning is not only parameter-efficient but also training-efficient. Experimental results show that for DeBERTaXXL with 1.6 billion parameters, Y-Tuning achieves performance more than 96% of full fine-tuning on GLUE Benchmark with only 2% tunable parameters and much fewer training costs.

Key wordspre-trained model    lightweight fine-tuning paradigms    label representation
收稿日期: 2023-02-18      出版日期: 2023-06-25
Corresponding Author(s): Xipeng QIU   
 引用本文:   
. [J]. Frontiers of Computer Science, 2024, 18(4): 184320.
Yitao LIU, Chenxin AN, Xipeng QIU. Y-Tuning: an efficient tuning paradigm for large-scale pre-trained models via label representation learning. Front. Comput. Sci., 2024, 18(4): 184320.
 链接本文:  
https://academic.hep.com.cn/fcs/CN/10.1007/s11704-023-3131-8
https://academic.hep.com.cn/fcs/CN/Y2024/V18/I4/184320
Fig.1  
Tuning type Input Output Function Tunable modules Param efficiency Training efficiency
Fine-tuning x p(y|x) f?(x) f,? × ×
Feature-based-tuning x p(y|x) f?(x) f
Adapter-tuning x p(y|x) f?+δ(x) f,δ ×
Prompt-tuning x p(y|x) f?([p;x]) f,p ×
Y-Tuning x,Y p(c|x,Y) f(ψ(Y),?(x)) f,ψ
Tab.1  
Fig.2  
Method Total params Tunable params CoLA (8.5k) SST-2 (67k) MPRC (3.7k) QQP (364k) MNLIm (393k) MNLImm (393k) QNLI (105k) RTE (2.5k) AVG
BARTen-FT 205M 205M 59.3 95.8 89.2 89.5 92.2 89.3 94.3 77.6 85.2
BARTen-FbT 223M 19M 42.1 93.2 76.0 86.7 81.3 82.4 88.4 60.6 75.6
BARTen-YT 220M 17M 44.4 94.4 79.2 85.5 81.6 83.0 88.2 62.8 76.9
BARTen-FT 205M 205M 51.4 95.6 86.4 73.4 89.4 88.6 94.5 73.9 80.6
BARTen-FbT 223M 19M 41.7 90.3 74.0 65.3 81.8 81.4 88.0 56.6 71.1
BARTen-YT 220M 17M 40.9 95.6 76.8 64.2 82.5 82.4 88.1 57.4 72.2
Tab.2  
Method Total params Tunable params Training speedup Memory Usage/% CoLA SST-2 MPRC QQP MNLI QNLI RTE AVG
RoBERTa-AT? 355M 3M 0.6x 88.7 67.4 96.3 92.9 88.5 90.4 94.7 83.4 87.7
RoBERTa-LoRA? 355M 0.8M 1.4x 41.9 68.2 96.2 90.9 91.6 90.6 94.9 87.4 88.5
RoBERTa-WARP? 355M 1M 1.8x 71.6 60.6 96.0 91.2 84.5 88.2 93.5 86.3 85.8
RoBERTa-YT 372M 17M 3.2x 18.1 54.4 94.5 85.0 87.4 83.1 88.2 81.9 82.1
DeBERTa-YT 1.6B 31M 1.6x 26.1 65.8 96.2 90.9 87.8 87.8 93.6 89.2 87.4
RoBERTa-FT? 355M 355M 1x 100 68.0 96.4 90.9 92.2 90.2 96.4 86.6 88.7
DeBERTa-FT§ 1.6B 1.6B ? ? 72.0 97.2 93.1 92.7 91.8 96.0 93.5 90.9
Tab.3  
Method Total params Tunable params RTE (2.5k) BoolQ (9.4k) CB (0.25k)
RoBERTa-FT? 355M 355M 86.6 86.9 98.2
RoBERTa-PT? 355M ? 58.8 62.3 71.4
RoBERTa-FbT 368M 14M 78.3 70.9 89.3
RoBERTa-YT 372M 17M 82.7 75.2 92.3
Tab.4  
Fig.3  
Fig.4  
Method CoNLL03 NER CoNLL03 CHUNK SQuAD 1.0
BART-FT 95.6 91.8 92.0
RoBERTa-PT? 86.1 ? 12.0
BART-FbT 70.9 73.6 73.6
BART-YT 88.2 85.9 82.7
Tab.5  
  
  
  
  
Initialization SST-2
Random Uniform 93.8
Sampled Vocab 94.4
Class Label 94.2
Opposite Label 93.8
  
Method Total params Tunable params SST-2 MNLIm/mm
RoBERTa-FT 355M 355M 96.4 90.4 / 90.1
RoBERTa-FbT 368M 14M 92.4 77.4 / 78.4
RoBERTa-YT1 372M 17M 92.5 76.4 / 77.2
RoBERTa-YT2 372M 17M 93.8 80.7 / 81.0
RoBERTa-YT4 372M 17M 94.5 82.8 / 83.3
  
1 J, Devlin M W, Chang K, Lee K Toutanova . BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2019, 4171−4186
2 T B, Brown B, Mann N, Ryder M, Subbiah J, Kaplan P, Dhariwal A, Neelakantan P, Shyam G, Sastry A, Askell S, Agarwal A, Herbert-Voss G, Krueger T, Henighan R, Child A, Ramesh D M, Ziegler J, Wu C, Winter C, Hesse M, Chen E, Sigler M, Litwin S, Gray B, Chess J, Clark C, Berner S, McCandlish A, Radford I, Sutskever D Amodei . Language models are few-shot learners. In: Proceedings of the 34th Conference on Neural Information Processing Systems. 2020, 1877−1901
3 X, Qiu T, Sun Y, Xu Y, Shao N, Dai X Huang . Pre-trained models for natural language processing: a survey. Science China Technological Sciences, 2020, 63( 10): 1872–1897
4 N, Houlsby A, Giurgiu S, Jastrzebski B, Morrone Laroussilhe Q, De A, Gesmundo M, Attariyan S Gelly . Parameter-efficient transfer learning for NLP. In: Proceedings of the 36th International Conference on Machine Learning. 2019, 2790−2799
5 A C, Stickland I Murray . BERT and PALs: projected attention layers for efficient adaptation in multi-task learning. In: Proceedings of the 36th International Conference on Machine Learning. 2019, 5986−5995
6 X L, Li P Liang . Prefix-tuning: optimizing continuous prompts for generation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. 2021, 4582−4597
7 B, Lester R, Al-Rfou N Constant . The power of scale for parameter-efficient prompt tuning. In: Proceedings of 2021 Conference on Empirical Methods in Natural Language Processing. 2021, 3045−3059
8 X, Liu Y, Zheng Z, Du M, Ding Y, Qian Z, Yang J Tang . GPT understands, too. 2021, arXiv preprint arXiv: 2103.10385
9 Y, Sun S, Wang S, Feng S, Ding C, Pang J, Shang J, Liu X, Chen Y, Zhao Y, Lu W, Liu Z, Wu W, Gong J, Liang Z, Shang P, Sun W, Liu X, Ouyang D, Yu H, Tian H, Wu H Wang . ERNIE 3.0: Large-scale knowledge enhanced pre-training for language understanding and generation. 2021, arXiv preprint arXiv: 2107.02137
10 T, Sun Y, Shao H, Qian X, Huang X Qiu . Black-box tuning for language-model-as-a-service. In: Proceedings of the 39th International Conference on Machine Learning. 2022, 20841−20855
11 J, Pfeiffer A, Rücklé C, Poth A, Kamath I, Vulić S, Ruder K, Cho I Gurevych . AdapterHub: a framework for adapting transformers. In: Proceedings of 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations. 2020, 46−54
12 Le Scao T, Rush A. How many data points is a prompt worth? In: Proceedings of 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2021, 2627−2636
13 T, Schick H Schutze . Exploiting cloze-questions for few-shot text classification and natural language inference. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume. 2021, 255−269
14 Petroni F, Rocktaschel T, Riedel S, Lewis P, Bakhtin A, Wu Y, Miller A. Language models as knowledge bases? In: Proceedings of 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. 2019, 2463−2473
15 Jiang Z, Xu F F, Araki J, Neubig G. How can we know what language models know? Transactions of the Association for Computational Linguistics, 2020, 8: 423−438
16 A, Aghajanyan S, Gupta L Zettlemoyer . Intrinsic dimensionality explains the effectiveness of language model fine-tuning. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. 2021, 7319−7328
17 Hu E J, Shen Y, Wallis P, Allen-Zhu Z, Li Y, Wang S, Wang L, Chen W. Lora: low-rank adaptation of large language models. In: Proceedings of the 10th International Conference on Learning Representations. 2021
18 He J, Zhou C, Ma X, Berg-Kirkpatrick T, Neubig G. Towards a unified view of parameter-efficient transfer learning. In: Proceedings of the 10th International Conference on Learning Representations. 2022
19 Y L, Sung J, Cho M Bansal . LST: ladder side-tuning for parameter and memory efficient transfer learning. 2022, arXiv preprint arXiv: 2206.06522
20 M, Lewis Y, Liu N, Goyal M, Ghazvininejad A, Mohamed O, Levy V, Stoyanov L Zettlemoyer . BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 2020, 7871−7880
21 Y, Liu M, Ott N, Goyal J, Du M, Joshi D, Chen O, Levy M, Lewis L, Zettlemoyer V Stoyanov . RoBERTa: a robustly optimized BERT pretraining approach. 2019, arXiv preprint arXiv: 1907.11692
22 P, He X, Liu J, Gao W Chen . DeBERTa: decoding-enhanced Bert with disentangled attention. In: Proceedings of the 9th International Conference on Learning Representations. 2021
23 Wolf T, Debut L, Sanh V, Chaumond J, Delangue C, Moi A, Cistac P, Rault T, Louf R, Funtowicz M, Davison J, Shleifer S, von Platen P, Ma C, Jernite Y, Plu J, Xu C, Le Scao T, Gugger S, Drame M, Lhoest Q, Rush A. Transformers: state-of-the-art natural language processing. In: Proceedings of 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations. 2020, 38−45
24 Z, Lan M, Chen S, Goodman K, Gimpel P, Sharma R Soricut . Albert: a lite bert for self-supervised learning of language representations. In: Proceedings of the 8th International Conference on Learning Representations. 2020
25 A, Wang Y, Pruksachatkun N, Nangia A, Singh J, Michael F, Hill O, Levy S R Bowman . SuperGLUE: a stickier benchmark for general-purpose language understanding systems. In: Proceedings of the 33rd Conference on Neural Information Processing Systems. 2019, 32
26 K, Hambardzumyan H, Khachatrian J May . WARP: word-level adversarial ReProgramming. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. 2021, 4921−4933
27 X, Liu K, Ji Y, Fu W, Tam Z, Du Z, Yang J Tang . P-tuning: prompt tuning can be comparable to fine-tuning across scales and tasks. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. 2022, 61−68
28 J, Pfeiffer A, Kamath A, Rücklé K, Cho I Gurevych . AdapterFusion: non-destructive task composition for transfer learning. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume. 2021, 487−503
29 Jin D, Jin Z, Zhou J T, Szolovits P. Is BERT really robust? A strong baseline for natural language attack on text classification and entailment. In: Proceedings of the 34th AAAI Conference on Artificial Intelligence. 2020, 8018−8025
30 L, Li R, Ma Q, Guo X, Xue X Qiu . BERT-ATTACK: adversarial attack against BERT using BERT. In: Proceedings of 2020 Conference on Empirical Methods in Natural Language Processing. 2020, 6193−6202
31 S, Ren Y, Deng K, He W Che . Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. 2019, 1085−1097
32 J, Gao J, Lanchantin M L, Soffa Y Qi . Black-box generation of adversarial text sequences to evade deep learning classifiers. In: Proceedings of 2018 IEEE Security and Privacy Workshops. 2018, 50−56
33 G, Zeng F, Qi Q, Zhou T, Zhang B, Hou Y, Zang Z, Liu M Sun . OpenAttack: an open-source textual adversarial attack toolkit. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations. 2021, 363−371
34 X, Li X, Sun Y, Meng J, Liang F, Wu J Li . Dice loss for data-imbalanced NLP tasks. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 2020, 465−476
35 Yeh C K, Wu W C, Ko W J, Wang Y C F. Learning deep latent space for multi-label classification. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence. 2017, 2838−2844
36 X, Sun B, Wei X, Ren S Ma . Label embedding network: learning label representation for soft training of deep networks. 2017, arXiv preprint arXiv: 1710.10393
37 Wang H, Chen C, Liu W, Chen K, Hu T, Chen G. Incorporating label embedding and feature augmentation for multi-dimensional classification. In: Proceedings of the 34th AAAI Conference on Artificial Intelligence. 2020, 6178−6185
38 G, Wang C, Li W, Wang Y, Zhang D, Shen X, Zhang R, Henao L Carin . Joint embedding of words and labels for text classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. 2018, 2321−2331
39 H, Zhang L, Xiao W, Chen Y, Wang Y Jin . Multi-task label embedding for text classification. In: Proceedings of 2018 Conference on Empirical Methods in Natural Language Processing. 2018, 4545−4553
40 C, Du Z, Chen F, Feng L, Zhu T, Gan L Nie . Explicit interaction model towards text classification. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence. 2019, 6359−6366
41 Sun C, Huang L, Qiu X. Utilizing BERT for aspect-based sentiment analysis via constructing auxiliary sentence. In: Proceedings of 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2019, 380−385
42 D, Chai W, Wu Q, Han F, Wu J Li . Description based text classification with reinforcement learning. In: Proceedings of the 37th International Conference on Machine Learning, 2020, 1371−1382
43 S, Wang H, Fang M, Khabsa H, Mao H Ma . Entailment as few-shot learner. 2021, arXiv preprint arXiv: 2104.14690
[1] FCS-23131-OF-YL_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed