Graph neural networks (GNNs) have emerged as a powerful tool for effectively mining and learning from graph-structured data, with applications spanning numerous domains. However, most research focuses on static graphs, neglecting the dynamic nature of real-world networks where topologies and attributes evolve over time. By integrating sequence modeling modules into traditional GNN architectures, dynamic GNNs aim to bridge this gap, capturing the inherent temporal dependencies of dynamic graphs for a more authentic depiction of complex networks. This paper provides a comprehensive review of the fundamental concepts, key techniques, and state-of-the-art dynamic GNN models. We present the mainstream dynamic GNN models in detail and categorize models based on how temporal information is incorporated. We also discuss large-scale dynamic GNNs and pre-training techniques. Although dynamic GNNs have shown superior performance, challenges remain in scalability, handling heterogeneous information, and lack of diverse graph datasets. The paper also discusses possible future directions, such as adaptive and memory-enhanced models, inductive learning, and theoretical analysis.
See github.com/benedekrozemberczki/pytorch_geometric_temporal website.
TGL
See github.com/amazon-science/tgl website.
Dynamic graph library (DyGLib)
See github.com/yule-BUAA/DyGLib website.
Temporal graph benchmark (TGB)
See github.com/shenyangHuang/TGB website.
BenchTemp
See github.com/qianghuangwhu/benchtemp website.
Tab.5
1
S M, Kazemi R, Goel K, Jain I, Kobyzev A, Sethi P, Forsyth P Poupart . Representation learning for dynamic graphs: a survey. The Journal of Machine Learning Research, 2020, 21( 1): 70
2
D, Xu C, Ruan E, Korpeoglu S, Kumar K Achan . Inductive representation learning on temporal graphs. In: Proceedings of the 8th International Conference on Learning Representations. 2020
3
E, Rossi B, Chamberlain F, Frasca D, Eynard F, Monti M Bronstein . Temporal graph networks for deep learning on dynamic graphs. 2020, arXiv preprint arXiv: 2006.10637
4
J, You T, Du J Leskovec . ROLAND: graph learning framework for dynamic graphs. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2022, 2358−2366
5
Y, Zhu F, Lyu C, Hu X, Chen X Liu . Encoder-decoder architecture for supervised dynamic graph learning: a survey. 2022, arXiv preprint arXiv: 2203.10480
6
C D T, Barros M R F, Mendonca A B, Vieira A Ziviani . A survey on embedding dynamic graphs. ACM Computing Surveys, 2021, 55( 1): 10
7
Cai B, Xiang Y, Gao L, Zhang H, Li Y, Li J. Temporal knowledge graph completion: a survey. In: Proceedings of the 32nd International Joint Conference on Artificial Intelligence. 2023, 6545−6553
8
C, Liu S Paterlini . Stock price prediction using temporal graph model with value chain data. 2023, arXiv preprint arXiv: 2303.09406
9
X, Wang Y, Ma Y, Wang W, Jin X, Wang J, Tang C, Jia J Yu . Traffic flow prediction via spatial temporal graph neural network. In: Proceedings of Web Conference 2020. 2020, 1082−1092
10
Y, Gao X, Wang X, He H, Feng Y Zhang . Rumor detection with self-supervised learning on texts and social graph. Frontiers of Computer Science, 2023, 17( 4): 174611
11
W, Hu M, Fey H, Ren M, Nakata Y, Dong J Leskovec . OGB-LSC: a large-scale challenge for machine learning on graphs. In: Proceedings of the 1st Neural Information Processing Systems Track on Datasets and Benchmarks. 2021
12
D, Fu J He . DPPIN: a biological repository of dynamic protein-protein interaction network data. In: Proceedings of 2022 IEEE International Conference on Big Data. 2022, 5269−5277
13
A G Hawkes . Spectra of some self-exciting and mutually exciting point processes. Biometrika, 1971, 58( 1): 83–90
14
S, Zuo H, Jiang Z, Li T, Zhao H Zha . Transformer HawKes process. In: Proceedings of the 37th International Conference on Machine Learning. 2020, 11692−11702
15
Y, Lu X, Wang C, Shi P S, Yu Y Ye . Temporal network embedding with micro- and macro-dynamics. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management. 2019, 469−478
16
Y, Zuo G, Liu H, Lin J, Guo X, Hu J Wu . Embedding temporal network via neighborhood formation. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018, 2857−2866
17
Chen F, Wang Y C, Wang B, Kuo C C J. Graph representation learning: a survey. APSIPA Transactions on Signal and Information Processing. 2020, 9: e15
18
S T, Roweis L K Saul . Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290( 5500): 2323–2326
19
M, Belkin P Niyogi . Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 2003, 15( 6): 1373–1396
20
S, Cao W, Lu Q Xu . GraRep: Learning graph representations with global structural information. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. 2015, 891−900
21
Luo X, Yuan J, Huang Z, Jiang H, Qin Y, Ju W, Zhang M, Sun Y. Hope: High-order graph ode for modeling interacting dynamics. In: International Conference on Machine Learning. 2023, 23124–23139
22
S, Bartunov D, Kondrashkin A, Osokin D Vetrov . Breaking sticks and ambiguities with adaptive skip-gram. In: Proceedings of the 19th International Conference on Artificial Intelligence and Statistics. 2016, 130−138
23
T Joachims . Text categorization with support vector machines: learning with many relevant features. In: Proceedings of the 10th European Conference on Machine Learning. 1998, 137−142
24
B, Perozzi R, Al-Rfou S Skiena . DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2014, 701−710
25
A, Grover J Leskovec . Node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016, 855−864
26
D, Wang P, Cui W Zhu . Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016, 1225−1234
27
S, Cao W, Lu Q Xu . Deep neural networks for learning graph representations. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence. 2016, 1145−1152
28
M, Defferrard X, Bresson P Vandergheynst . Convolutional neural networks on graphs with fast localized spectral filtering. In: Proceedings of the 30th International Conference on Neural Information Processing Systems. 2016, 3844−3852
29
T N, Kipf M Welling . Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations. 2017
30
P, Veličković G, Cucurull A, Casanova A, Romero P, Liò Y Bengio . Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations. 2018
31
W L, Hamilton Z, Ying J Leskovec . Inductive representation learning on large graphs. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017, 1025−1035
32
D, Zhu P, Cui Z, Zhang J, Pei W Zhu . High-order proximity preserved embedding for dynamic networks. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(11): 2134−2144
33
J, Li H, Dani X, Hu J, Tang Y, Chang H Liu . Attributed network embedding for learning in a dynamic environment. In: Proceedings of 2017 ACM on Conference on Information and Knowledge Management. 2017, 387−396
34
G H, Nguyen J B, Lee R A, Rossi N K, Ahmed E, Koh S Kim . Continuous-time dynamic network embeddings. In: Proceedings of Web Conference 2018. 2018, 969−976
35
Heidari F, Papagelis M. Evonrl: Evolving network representation learning based on random walks. In: Complex Networks and Their Applications VII: Volume 1 Proceedings The 7th International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2018 7. 2019, 457–469
36
F, Manessi A, Rozza M Manzo . Dynamic graph convolutional networks. Pattern Recognition, 2020, 97: 107000
37
A, Sankar Y, Wu L, Gou W, Zhang H Yang . DySAT: deep neural representation learning on dynamic graphs via self-attention networks. In: Proceedings of the 13th International Conference on Web Search and Data Mining. 2020, 519−527
38
Y, Wang P, Li C, Bai V S, Subrahmanian J Leskovec . Generic representation learning for dynamic social interaction. In: Proceedings of KDD’ 20: Knowledge Discovery in Databases. 2020
39
Y, Wang P, Li C, Bai J Leskovec . TEDIC: neural modeling of behavioral patterns in dynamic social interaction networks. In: Proceedings of Web Conference 2021. 2021, 693−705
40
J, Chen X, Wang X Xu . GC-LSTM: graph convolution embedded LSTM for dynamic network link prediction. Applied Intelligence, 2022, 52( 7): 7513–7528
41
J, Li Z, Han H, Cheng J, Su P, Wang J, Zhang L Pan . Predicting path failure in time-evolving graphs. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019, 1279−1289
42
W, Jin M, Qu X, Jin X Ren . Recurrent event network: autoregressive structure inferenceover temporal knowledge graphs. In: Proceedings of 2020 Conference on Empirical Methods in Natural Language Processing. 2020, 6669−6683
43
Y, Zhu F, Cong D, Zhang W, Gong Q, Lin W, Feng Y, Dong J Tang . WinGNN: dynamic graph neural networks with random gradient aggregation window. In: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2023, 3650−3662
44
A, Pareja G, Domeniconi J, Chen T, Ma T, Suzumura H, Kanezashi T, Kaler T, Schardl C Leiserson . EvolveGCN: evolving graph convolutional networks for dynamic graphs. In: Proceedings of the 34th AAAI Conference on Artificial Intelligence. 2020, 5363−5370
45
Qin X, Sheikh N, Lei C, Reinwald B, Domeniconi G. SEIGN: a simple and efficient graph neural network for large dynamic graphs. In: Proceedings of the 39th IEEE International Conference on Data Engineering. 2023, 2850−2863
46
P, Goyal S R, Chhetri A Canedo . Dyngraph2vec: capturing network dynamics using dynamic graph representation learning. Knowledge-Based Systems, 2020, 187: 104816
47
R, Trivedi H, Dai Y, Wang L Song . Know-evolve: deep temporal reasoning for dynamic knowledge graphs. In: Proceedings of the 34th International Conference on Machine Learning. 2017, 3462−3471
48
R, Trivedi M, Farajtabar P, Biswal H Zha . DyRep: learning representations over dynamic graphs. In: Proceedings of the 7th International Conference on Learning Representations. 2019
49
B, Knyazev C, Augusta G W Taylor . Learning temporal attention in dynamic graphs with bilinear interactions. PLoS One, 2021, 16( 3): e0247936
50
Z, Han Y, Ma Y, Wang S, Gunnemann V Tresp . Graph Hawkes neural network for forecasting on temporal knowledge graphs. In: Proceedings of the Automated Knowledge Base Construction. 2020
51
H, Sun S, Geng J, Zhong H, Hu K He . Graph Hawkes transformer for extrapolated reasoning on temporal knowledge graphs. In: Proceedings of 2022 Conference on Empirical Methods in Natural Language Processing. 2022, 7481−7493
52
Z, Wen Y Fang . Trend: temporal event and node dynamics for graph representation learning. In: Proceedings of ACM Web Conference 2022. 2022, 1159−1169
53
Y, Ma Z, Guo Z, Ren J, Tang D Yin . Streaming graph neural networks. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2020, 719−728
54
S, Kumar X, Zhang J Leskovec . Predicting dynamic embedding trajectory in temporal interaction networks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019, 1269−1278
55
X, Wang D, Lyu M, Li Y, Xia Q, Yang X, Wang X, Wang P, Cui Y, Yang B, Sun Z Y Guo . APAN: asynchronous propagation attention network for real-time temporal graph embedding. In: Proceedings of 2021 International Conference on Management of Data. 2021, 2628−2638
56
Y, Wang Y Y, Chang Y, Liu J, Leskovec P Li . Inductive representation learning in temporal networks via causal anonymous walks. In: Proceedings of the 9th International Conference on Learning Representations. 2021
57
Y, Li Y, Shen L, Chen M Yuan . Zebra: when temporal graph neural networks meet temporal personalized PageRank. Proceedings of the VLDB Endowment, 2023, 16( 6): 1332–1345
58
H, Li L Chen . EARLY: efficient and reliable graph neural network for dynamic graphs. Proceedings of the ACM on Management of Data, 2023, 1( 2): 163
59
Y, Zheng Z, Wei J Liu . Decoupled graph neural networks for large dynamic graphs. Proceedings of the VLDB Endowment, 2023, 16( 9): 2239–2247
60
D, Fu J He . SDG: a simplified and dynamic graph neural network. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2021, 2273−2277
61
Liu H, Xu X, Lu J A, Chen G, Zeng Z. Optimizing pinning control of complex dynamical networks based on spectral properties of grounded laplacian matrices. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 2018, 51(2): 786–796
62
S, Bonner A, Atapour-Abarghouei P T, Jackson J, Brennan I, Kureshi G, Theodoropoulos A S, McGough B Obara . Temporal neighbourhood aggregation: predicting future links in temporal graphs via recurrent variational graph convolutions. In: Proceedings of 2019 IEEE International Conference on Big Data. 2019, 5336−5345
63
J, Chung C, Gulcehre K, Cho Y Bengio . Empirical evaluation of gated recurrent neural networks on sequence modeling. 2014, arXiv preprint arXiv: 1412.3555
64
P, Goyal N, Kamra X, He Y Liu . DynGEM: deep embedding method for dynamic graphs. 2018, arXiv preprint arXiv: 1805.11273
65
T, Chen I, Goodfellow J Shlens . Net2Net: accelerating learning via knowledge transfer. In: Proceedings of the 4th International Conference on Learning Representations. 2016
66
T, Kipf E, Fetaya K C, Wang M, Welling R Zemel . Neural relational inference for interacting systems. In: Proceedings of the 35th International Conference on Machine Learning. 2018, 2688−2697
67
S M, Kazemi R, Goel S, Eghbali J, Ramanan J, Sahota S, Thakur S, Wu C, Smyth P, Poupart M Brubaker . Time2Vec: learning a vector representation of time. 2019, arXiv preprint arXiv: 1907.05321
68
Loomis L H. Introduction to Abstract Harmonic Analysis. New York: Dover Publications, 2013
69
F, Wu A, Souza T, Zhang C, Fifty T, Yu K Weinberger . Simplifying graph convolutional networks. In: Proceedings of the 36th International Conference on Machine Learning. 2019, 6861−6871
70
J, Gasteiger A, Bojchevski S Günnemann . Predict then propagate: graph neural networks meet personalized pagerank. In: Proceedings of the 7h International Conference on Learning Representations. 2019
71
C, Wang D, Sun Y Bai . PiPAD: pipelined and parallel dynamic GNN training on GPUs. In: Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming. 2023, 405−418
72
Chen H, Hao C. DGNN-booster: a generic FPGA accelerator framework for dynamic graph neural network inference. In: Proceedings of the 31st IEEE Annual International Symposium on Field-Programmable Custom Computing Machines. 2023, 195−201
73
V T, Chakaravarthy S S, Pandian S, Raje Y, Sabharwal T, Suzumura S Ubaru . Efficient scaling of dynamic graph neural networks. In: Proceedings of International Conference for High Performance Computing, Networking, Storage and Analysis. 2021, 77
74
H, Zhou D, Zheng I, Nisa V, Ioannidis X, Song G Karypis . TGL: a general framework for temporal GNN training on billion-scale graphs. Proceedings of the VLDB Endowment, 2022, 15( 8): 1572–1580
75
H, Zhou D, Zheng X, Song G, Karypis V Prasanna . DistTGL: distributed memory-based temporal graph neural network training. In: Proceedings of International Conference for High Performance Computing, Networking, Storage and Analysis. 2023, 39
76
X, Chen Y, Liao Y, Xiong Y, Zhang S, Zhang J, Zhang Y Sun . SPEED: streaming partition and parallel acceleration for temporal interaction graph embedding. 2023, arXiv preprint arXiv: 2308.14129
77
Y, Xia Z, Zhang H, Wang D, Yang X, Zhou D Cheng . Redundancy-free high-performance dynamic GNN training with hierarchical pipeline parallelism. In: Proceedings of the 32nd International Symposium on High-Performance Parallel and Distributed Computing. 2023, 17−30
78
J, Li S, Tian R, Wu L, Zhu W, Zhao C, Meng L, Chen Z, Zheng H Yin . Less can be more: unsupervised graph pruning for large-scale dynamic graphs. 2023, arXiv preprint arXiv: 2305.10673
79
A, Madan M, Cebrian S, Moturu K, Farrahi A Pentland . Sensing the “health state” of a community. IEEE Pervasive Computing, 2012, 11( 4): 36–45
80
J, Shetty J Adibi . The enron email dataset database schema and brief statistical report. Information Sciences Institute Technical Report, University of Southern California, 2004, 4( 1): 120–128
81
P, Sapiezynski A, Stopczynski D D, Lassen S Lehmann . Interaction data from the copenhagen networks study. Scientific Data, 2019, 6( 1): 315
82
P, Panzarasa T, Opsahl K M Carley . Patterns and dynamics of users’ behavior and interaction: network analysis of an online community. Journal of the American Society for Information Science and Technology, 2009, 60( 5): 911–932
83
Kumar S, Spezzano F, Subrahmanian V S, Faloutsos C. Edge weight prediction in weighted signed networks. In: Proceedings of the 16th IEEE International Conference on Data Mining. 2016, 221−230
84
Kumar S, Hooi B, Makhija D, Kumar M, Faloutsos C, Subrahmanian V S. REV2: fraudulent user prediction in rating platforms. In: Proceedings of the 11th ACM International Conference on Web Search and Data Mining. 2018, 333−341
85
K, Leetaru P A Schrodt . GDELT: global data on events, location, and tone, 1979-2012. In: Proceedings of ISA Annual Convention. 2013, 1−49
86
Q, Huang J, Jiang X S, Rao C, Zhang Z, Han Z, Zhang X, Wang Y, He Q, Xu Y, Zhao C, Hu S, Shang B Du . BenchTemp: a general benchmark for evaluating temporal graph neural networks. 2023, arXiv preprint arXiv: 2308.16385
87
M, Jin Y F, Li S Pan . Neural temporal walks: motif-aware representation learning on continuous-time dynamic graphs. In: Proceedings of the 36th International Conference on Neural Information Processing Systems. 2022, 1445
88
H, Zhu X, Li P, Zhang G, Li J, He H, Li K Gai . Learning tree-based deep model for recommender systems. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018, 1079−1088
89
Y, Jin Y C, Lee K, Sharma M, Ye K, Sikka A, Divakaran S Kumar . Predicting information pathways across online communities. In: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2023, 1044−1056
90
X, Huang Y, Yang Y, Wang C, Wang Z, Zhang J, Xu L, Chen M Vazirgiannis . DGraph: a large-scale financial dataset for graph anomaly detection. In: Proceedings of the 36th International Conference on Neural Information Processing Systems. 2022, 1654
91
M A, Bailey A, Strezhnev E Voeten . Estimating dynamic state preferences from united nations voting data. Journal of Conflict Resolution, 2017, 61( 2): 430–456
92
S, Huang Y, Hitti G, Rabusseau R Rabbany . Laplacian change point detection for dynamic graphs. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020, 349−358
93
J H Fowler . Legislative cosponsorship networks in the US house and senate. Social Networks, 2006, 28( 4): 454–465
94
G K, MacDonald K A, Brauman S, Sun K M, Carlson E S, Cassidy J S, Gerber P C West . Rethinking agricultural trade relationships in an era of globalization. BioScience, 2015, 65( 3): 275–289
95
F, Béres R, Pálovics A, Oláh A A Benczúr . Temporal walk based centrality metric for graph streams. Applied Network Science, 2018, 3( 1): 32
96
Leskovec J, Kleinberg J, Faloutsos C. Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining. 2005, 177−187
97
M, Schäfer M, Strohmeier V, Lenders I, Martinovic M Wilhelm . Bringing up OpenSky: a large-scale ads-b sensor network for research. In: Proceedings of the 13th International Symposium on Information Processing in Sensor Networks. 2014, 83−94
M, Weber G, Domeniconi J, Chen D K I, Weidele C, Bellei T, Robinson C E Leiserson . Anti-money laundering in Bitcoin: experimenting with graph convolutional networks for financial forensics. 2019, arXiv preprint arXiv: 1908.02591
100
F, Poursafaei S, Huang K, Pelrine R Rabbany . Towards better evaluation for dynamic link prediction. In: Proceedings of the 36th International Conference on Neural Information Processing Systems. 2022, 2386
101
S J, Pan Q Yang . A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 2010, 22( 10): 1345–1359
102
B, Neyshabur H, Sedghi C Zhang . What is being transferred in transfer learning? In: Proceedings of the 34th International Conference on Neural Information Processing Systems. 2020, 44
103
H, Wang Y, Mao J, Sun S, Zhang D Zhou . Dynamic transfer learning across graphs. 2023, arXiv preprint arXiv: 2305.00664
104
Z, Hu Y, Dong K, Wang K W, Chang Y Sun . GPT-GNN: generative pre-training of graph neural networks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020, 1857−1867
105
J, Qiu Q, Chen Y, Dong J, Zhang H, Yang M, Ding K, Wang J Tang . GCC: graph contrastive coding for graph neural network pre-training. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020, 1150−1160
106
K J, Chen J, Zhang L, Jiang Y, Wang Y Dai . Pre-training on dynamic graph neural networks. Neurocomputing, 2022, 500: 679–687
107
Y, Bei H, Xu S, Zhou H, Chi M, Zhang Z, Li J Bu . CPDG: a contrastive pre-training method for dynamic graph neural networks. 2023, arXiv preprint arXiv: 2307.02813
108
K, Sharma M, Raghavendra Y C, Lee M A, Kumar S Kumar . Representation learning in continuous-time dynamic signed networks. In: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. 2023, 2229−2238
109
E, Dai S Wang . Towards self-explainable graph neural network. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management. 2021, 302−311
110
J, Xie Y, Liu Y Shen . Explaining dynamic graph neural networks via relevance back-propagation. 2022, arXiv preprint arXiv: 2207.11175
111
K, Zheng B, Ma B Chen . DynBraingNN: Towards spatio-temporal interpretable graph neural network based on dynamic brain connectome for psychiatric diagnosis. In: Proceedings of the 14th International Workshop on Machine Learning in Medical Imaging. 2023, 164−173
112
T B, Brown B, Mann N, Ryder M, Subbiah JD, Kaplan P, Dhariwal A, Neelakantan P, Shyam G, Sastry A, Askell S, Agarwal A, Herbert-Voss G, Krueger T, Henighan R, Child A, Ramesh D M, Ziegler J, Wu C, Winter C, Hesse M, Chen E, Sigler M, Litwin S, Gray B, Chess J, Clark C, Berner S, McCandlish A, Radford I, Sutskever D Amodei . Language models are few-shot learners. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. 2020, 159
113
Y, Zhuang Y, Yu K, Wang H, Sun C Zhang . ToolQA: a dataset for LLM question answering with external tools. In: Proceedings of the 37th International Conference on Neural Information Processing Systems. 2023, 36
114
Mendonça J, Pereira P, Moniz H, Carvalho J P, Lavie A, Trancoso I. Simple LLM prompting is state-of-the-art for robust and multilingual dialogue evaluation. In: Proceedings of the 11th Dialog System Technology Challenge. 2023, 133−143
115
Zhang Z, Wang X, Zhang Z, Li H, Qin Y, Wu S, Zhu W. LLM4DyG: can large language models solve problems on dynamic graphs? 2023, arXiv preprint arXiv: 2310.17110
116
J, Tang Y, Yang W, Wei L, Shi L, Su S, Cheng D, Yin C Huang . GraphGPT: graph instruction tuning for large language models. 2023, arXiv preprint arXiv: 2310.13023