Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Engineering in China  2009, Vol. 3 Issue (3): 298-304   https://doi.org/10.1007/s11705-009-0019-6
  RESEARCH ARTICLE 本期目录
Efficient synthesis of titania nanotubes and enhanced photoresponse of Pt decorated TiO2 for water splitting
Efficient synthesis of titania nanotubes and enhanced photoresponse of Pt decorated TiO2 for water splitting
Yuxin YIN1, Xin TAN1(), Feng HOU2, Lin ZHAO1
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; 2. School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
 全文: PDF(406 KB)   HTML
Abstract

We investigated the effect of HMT (hexamethylenetetraamine) on the anodic growth of TiO2 nanotube arrays. The tube length increases to 4.3 μm with HMT concentration increasing to 0.04 mol·L-1. Adsorption of HMT on the TiO2 surface is shown to markedly decrease the chemical dissolution rate of tube mouth, resulting in longer nanotube length. Furthermore, Pt nanoparticles were successfully deposited on the surface of TiO2 nanotubes by ac electrodeposition method. The TiO2/Pt composites were characterized by field emission scanning electron microscope (FESEM), X-ray photoelectron spectra (XPS), and photoelectrochemistry. An enhancement in photocurrent density has been achieved upon modification of TiO2 nanotubes with Pt nanoparticles.

Key wordsTiO2 nanotube arrays    HMT    TiO2/Pt    Photocurrent density
收稿日期: 2008-12-19      出版日期: 2009-09-05
Corresponding Author(s): TAN Xin,Email:tanxin@tju.edu.cn   
 引用本文:   
. Efficient synthesis of titania nanotubes and enhanced photoresponse of Pt decorated TiO2 for water splitting[J]. Frontiers of Chemical Engineering in China, 2009, 3(3): 298-304.
Yuxin YIN, Xin TAN, Feng HOU, Lin ZHAO. Efficient synthesis of titania nanotubes and enhanced photoresponse of Pt decorated TiO2 for water splitting. Front Chem Eng Chin, 2009, 3(3): 298-304.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-009-0019-6
https://academic.hep.com.cn/fcse/CN/Y2009/V3/I3/298
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
1 Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature , 1972, 238: 37-38
doi: 10.1038/238037a0
2 Mor G K, Shankar K, Paulose M, Varghese O K, Grimes C A. Enhanced photocleavage of water using titania nanotube arrays. Nano Lett , 2005, 5: 191-195
doi: 10.1021/nl048301k
3 Varghese O K, Paulose M, Shankar K, Mor G K, Grimes C A. Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. J Nanosci Nanotechnol , 2005, 5: 1158-1165
doi: 10.1166/jnn.2005.195
4 Beranek R, Tsuchiya H, Sugishima T, Macak J M, Taveira L, Fujimoto S, Kisch H, Schmuki P. Enhancement and limits of the photoelec trochemical response from anodic TiO2 nanotubes. Appl Phys Lett , 2005, 87: 243114—243116
doi: 10.1063/1.2140085
5 Law M, Greene L E, Johnson J C, Saykally R, Yang P D. Nanowire dye-sensitized solar cells. Nat Mater , 2005, 4: 455-459
doi: 10.1038/nmat1387
6 Frank A J, Kopidakis N, van de Lagemaat J. Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties. Coord Chem Rev , 2004, 248: 1165-1179
doi: 10.1016/j.ccr.2004.03.015
7 Mor G K, Shankar K, Paulose M, Varghese O K, Grimes C A. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett , 2006, 6: 215-218
doi: 10.1021/nl052099j
8 Guo Y, Hu J, Liang H, Wan L, Bai C. TiO2-based composite nanotube arrays prepared via layer-by-layer assembly. Adv Funct Mater , 2005, 15: 196-202
doi: 10.1002/adfm.200305098
9 Wu D, Chen Y, Liu J, Zhao X, Li A, Ming N. Co-doped titanate nanotubes. Appl Phys Lett , 2005, 87: 112501—112503
doi: 10.1063/1.2043254
10 Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin M Y, Aucouturier M. Structure and physicochemistry of anodic oxide films on titanium and TA6V Alloy. Surf Interface Anal , 1999, 27: 629-637
doi: 10.1002/(SICI)1096-9918(199907)27:7<629::AID-SIA551>3.0.CO;2-0
11 Yin Y X, Jin Z G, Hou F. Fabrication and properties of TiO2 nanotube arrays using glycerol-DMSO-H2O electrolyte. Acta Phys-Chim Sin , 2007, 23: 1797-1802
12 Shin H J, Jeong D K, Lee J G, Sung M M, Kim J Y. Formation of TiO2 and ZrO2 nanotubes using atomic layer deposition with ultraprecise control of the wall thickness. Adv Mater , 2004, 16: 1197-1200
doi: 10.1002/adma.200306296
13 Yang H G, Zeng H C. Control of nucleation in solution growth of anatase TiO2 on glass substrate. J Phys Chem B , 2003, 107: 12244-12255
doi: 10.1021/jp022155u
14 Pradhan S K, Reucroft P J, Yang F Q, Dozier A. Growth of TiO2 nanorods by metalorganic chemical vapor deposition. J Cryst Growth , 2003, 256: 83-88
doi: 10.1016/S0022-0248(03)01339-3
15 Sander M S, Cote M J, Gu W, Kile B M, Tripp C P. Template-assisted fabrication of dense, aligned arrays of titania nanotubes with well-controlled dimensions on substrates. Adv Mater , 2004, 16: 2052-2057
16 Miyauchi M, Tokudome H, Toda Y, Kamiya T, Hosono H. Electron field emission from TiO2 nanotube arrays synthesized by hydrothermal reaction. Appl Phys Lett , 2006, 89: 043114-043116
doi: 10.1063/1.2245202
17 Macak J M, Tsuchiya H, Taveira L, Aldabergerova S, Schmuki P. Smooth anodic TiO2 nanotubes. Angew Chem Int Ed , 2005, 44: 7463-7465
doi: 10.1002/anie.200502781
18 Ghicov A, Tsuchiya H, Macak J M, Schmuki P. Titanium oxide nanotubes prepared in phosphate electrolytes. Electrochem Commun , 2005, 7: 505-509
doi: 10.1016/j.elecom.2005.03.007
19 Ruan C M, Paulose M, Varghese O K, Mor G K, Grimes C A. Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. J Phys Chem B , 2005, 109: 15754-15759
doi: 10.1021/jp052736u
20 Yin Y X, Jin Z G, Hou F, Wang X. Synthesis and morphology of TiO2 nanotube arrays by anodic oxidation using modified glycerol-based electrolytes. J Am Ceram Soc , 2007, 90: 2384-2389
doi: 10.1111/j.1551-2916.2007.01815.x
21 Heller A. Optically transparent metallic catalysts on Semiconductors. Pure Appl Chem , 1986, 58: 1189-1192
doi: 10.1351/pac198658091189
22 Domen K, Sakata Y, Kudo A, Maruya K, Onishi T. The photocatalytic activity of a platinized titanium dioxide catalyst supported over silica. Bull Chem Soc Jpn , 1988, 61: 359-362
doi: 10.1246/bcsj.61.359
23 Nosaka Y, Norimatsu K, Miyama H. The function of metals in metal-compounded semiconductor photocatalysts. Chem Phys Lett , 1984, 106: 128-131
doi: 10.1016/0009-2614(84)87025-6
24 Chandrasekharan N, Kamat P V. Improving the photoelectrochemical performance of nanostructured TiO2 films by adsorption of gold nanoparticles. J Phys Chem B , 2000, 104: 10851-10857
doi: 10.1021/jp0010029
25 Silva W E, Alves S, De Farias R F. Synthesis, characterization and thermogravimetric study of Eu(III), Tm (III), Fe(III), Cr(II), Ni(II), Co(II), Cu(II), Pb(II) and Hg(II) coordination compounds with hexamethylenetetramine. J Coord Chem , 2004, 57: 967-971
doi: 10.1080/00958970412331272421
26 Liu Z L, Lee J Y, Chen W X, Han M, Gan L M. Physical and electrochemical characterizations of microwave-assisted polyol preparation of carbon-supported PtRu nanoparticles. Langmuir , 2004, 20: 181-187
doi: 10.1021/la035204i
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed