Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Engineering in China  2009, Vol. 3 Issue (2): 176-181   https://doi.org/10.1007/s11705-009-0203-8
  FESEARCH ARTICLE 本期目录
Phenolic rigid organic filler/isotactic polypropylene composites. III. Impact resistance property
Phenolic rigid organic filler/isotactic polypropylene composites. III. Impact resistance property
Heming LIN, Dongming QI(), Jian HAN, Zhiqi CAI, Minghua WU
Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
 全文: PDF(339 KB)   HTML
Abstract

A novel phenolic rigid organic filler (KT) was used to modify isotactic polypropylene (iPP). The influence of KT particles on the impact resistance property of PP/KT specimens (with similar interparticles distance, 1.8 μm) was studied by notched izod impact tests. It was found that the brittle-ductile transition (BDT) of the PP/KT microcomposites took place at the filler content of about 4%, and the impact strength attains the maximum at 5% (with filler particles size of 1.5 μm), which is about 2.5 times that of unfilled iPP specimens. The impact fracture morphology was investigated by scanning electron microscopy (SEM). For the PP/KT specimens and the high-density polyethylene/KT (HDPE/KT) specimens in ductile fracture mode, many microfibers could be found on the whole impact fracture surface. It was the filler particles that induced the plastic deformation of interparticles ligament and hence improved the capability of iPP matrix on absorbing impact energy dramatically. The determinants on the BDT were further discussed on the basis of stress concentration and debonding resistance. It can be concluded that aside from the interparticle distance, the filler particles size also plays an important role in semicrystalline polymer toughening.

Key wordsrigid organic filler    polypropylene    impact resistance
收稿日期: 2008-09-23      出版日期: 2009-06-05
Corresponding Author(s): QI Dongming,Email:dongmingqi@zstu.edu.cn   
 引用本文:   
. Phenolic rigid organic filler/isotactic polypropylene composites. III. Impact resistance property[J]. Frontiers of Chemical Engineering in China, 2009, 3(2): 176-181.
Heming LIN, Dongming QI, Jian HAN, Zhiqi CAI, Minghua WU. Phenolic rigid organic filler/isotactic polypropylene composites. III. Impact resistance property. Front Chem Eng Chin, 2009, 3(2): 176-181.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-009-0203-8
https://academic.hep.com.cn/fcse/CN/Y2009/V3/I2/176
Fig.1  
Samplefiller content /%Dan) /μmPdia)IPDa) /μmmaximal diameter b) /μmTccry) /°Ccrystallinity c) /%
iPP0127.145.6
PP/KT-2.52.5≈1.011.181.82<4.3127.046.0
PP/KT-5.05.0≈1.491.171.81<5.7127.446.2
PP/KT-7.57.5≈1.881.141.74<6.3126.345.9
PP/KT-10.010.0≈2.371.201.80<9.8126.846.0
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
1 Karger-Kocsis J, ed. Polypropylene: composites, London: Chapman & Hall, 1995. Chapter 1
2 Baker R A, Koller L L, Kummer P E. Handbook of fillers for plastics, 2nd ed. New York: Van Nostrand Reinhold, 1987
3 Thio Y S, Argon A S, Cohen R E, Weinberg M. Toughening of isotactic polypropylene with CaCO3 particles. Polymer , 2002, 43(13): 3661-3674
doi: 10.1016/S0032-3861(02)00193-3
4 Zuiderduin W C J, Westzaan C, Huétink J, Gaymans R J. Toughening of polypropylene with calcium carbonate particles. Polymer , 2003, 44(1): 261-275
doi: 10.1016/S0032-3861(02)00769-3
5 Zhang Q X, Yu Z Z, Xie X L, Mai Y W. Crystallization and impact energy of polypropylene/CaCO3 nanocomposites with nonionic modifier. Polymer , 2004, 45(17): 5985-5994
doi: 10.1016/j.polymer.2004.06.044
6 Liang J Z, Li R K Y. Brittle-ductile transition in polypropylene filled with glass beads. Polymer , 1999, 40(11): 3191-3195
doi: 10.1016/S0032-3861(98)00532-1
7 Wu X, Zhu X, Qi Z. The 8th International conference on deformation, yield and fracture of polymers. London: The Plastics and Rubber Institute, 1991:78/1
8 Muratoglu O K, Argon A S, Cohen R E, Weinberg M. Crystalline morphology of polyamide-6 near planar surfaces. Polymer , 1995, 36(11): 2143-2152
doi: 10.1016/0032-3861(95)95289-D
9 Bartczak Z, Argon A S, Cohen R E, Kowalewski T. The morphology and orientation of polyethylene in films of sub-micron thickness crystallized in contact with calcite and rubber substrates. Polymer , 1999, 40(9): 2367-2380
doi: 10.1016/S0032-3861(98)00443-1
10 Muratoglu O K, Argon A S, Cohen R E, Weinberg M. Toughening mechanism of rubber-modified polyamides. Polymer , 1995, 36(5): 921-930
doi: 10.1016/0032-3861(95)93590-I
11 Muratoglu O K, Argon A S, Cohen R E, Weinberg M. Microstructural processes of fracture of rubber-modified polyamides. Polymer , 1995, 36(25): 4771-4786
doi: 10.1016/00323-8619(59)92934-
12 Wang Y, Fu Q, Li Q, Zhang G, Shen K, Wang Y Z. Ductile-brittle-transition phenomenon in polypropylene/ethylene-propylene-diene rubber blends obtained by dynamic packing injection molding: A new understanding of the rubber-toughening mechanism. J Polym Sci: Polym Phys , 2002, 40(18): 2086-2097
doi: 10.1002/polb.10260
13 Qi D M, Yang L, Wu M H, Lin H M, Nitta K H. Phenolic rigid organic filler/isotactic polypropylene composites. I. preparation. Frontiers of Chemical Engineering in China , 2008, 2(3): 236-241
doi: 10.1007/s11705-008-0034-z
14 Rong M Z, Zhang M Q, Zheng Y X, Zeng H M, Friedrich K. Improvement of tensile properties of nano-SiO2/PP composites in relation to percolation mechanism. Polymer , 2001, 42(7): 3301-3304
doi: 10.1016/S0032-3861(00)00741-2
15 Jancar J, Dianselmo A. The yield strength of particulate reinforced thermoplastic composites. Polym Eng Sci , 1992, 32(18): 1394-1399
doi: 10.1002/pen.760321809
16 Fu Q, Wanh G, Shen J. Polyethylene toughened by CaCO3 particle: Brittle-ductile transition of CaCO3-toughened HDPE. J Appl Polym Sci , 1993, 49(4): 673-677
doi: 10.1002/app.1993.070490412
17 Chen S G, Hu J W, Zhang M Q, Rong M Z, Zheng Q. Time dependent percolation of carbon black filled polymer composites in response to solvent vapor. J Mater Sci , 2005, 40(8): 2065-2068
doi: 10.1007/s10853-005-1236-0
18 Wang K, Wu J S, Zeng H M. Microstructure and fracture behavior of polypropylene/barium sulfate composites. J Appl Polym Sci , 2006, 99(3): 1207-1213
doi: 10.1002/app.22596
19 Bikiaris D N, Papageorgiou G Z, Pavlidou E, Vouroutzis N, Palatzoglou P, Karayannidis G P. Preparation by melt mixing and characterization of isotactic polypropylene/SiO2 nanocomposites containing untreated and surface-treated nanoparticles. J Appl Polym Sci , 2006, 100(4): 2684-2696
doi: 10.1002/app.22849
20 Dubnikova I L, Berezina S M, Antonov A V. Effect of rigid particle size on the toughness of filled polypropylene. J Appl Polym Sci , 2004, 94(5): 1917-1926
doi: 10.1002/app.21017
21 Hutchinson J W. Crack tip shielding by micro-cracking in brittle solids. Acta metallurgica , 1987, 35(7):1605-1619
doi: 10.1016/0001-6160(87)90108-8
22 Bartczak Z, Argon A S, Cohen R E, Weinberg M. Toughness mechanism in semi-crystalline polymer blends: I. High-density polyethylene toughened with rubbers Polymer,1999, 40 (9): 2331-2346 ; II. High-density polyethylene toughened with calcium carbonate filler particles. Polymer , 1999, 40(9): 2347-2365
doi: 10.1016/S0032-3861(98)00444-3
23 Qi D M, Shao J Z, Wu M H, Nitta K H. Phenolic rigid organic filler/isotactic polypropylene composites. II. tensile properites. Frontiers of Chemical Engineering in China , 2008, 2(4): 396-401
doi: 10.1007/s11705-008-0077-1
24 Mccrum N G, Buckley C B, Bucknall C B. Principles of Polymer Engineering. New York: Oxford University Press,, 1997
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed