Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2011, Vol. 5 Issue (1): 2-10   https://doi.org/10.1007/s11705-010-0528-3
  REVIEW ARTICLE 本期目录
Methanation of carbon dioxide: an overview
Methanation of carbon dioxide: an overview
Wei WANG, Jinlong GONG()
Key Laboratory for Green Chemical Technology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
 全文: PDF(265 KB)   HTML
Abstract

Although being very challenging, utilization of carbon dioxide (CO2) originating from production processes and flue gases of CO2-intensive sectors has a great environmental and industrial potential due to improving the resource efficiency of industry as well as by contributing to the reduction of CO2 emissions. As a renewable and environmentally friendly source of carbon, catalytic approaches for CO2 fixation in the synthesis of chemicals offer the way to mitigate the increasing CO2 buildup. Among the catalytic reactions, methanation of CO2 is a particularly promising technique for producing energy carrier or chemical. This article focuses on recent developments in catalytic materials, novel reactors, and reaction mechanism for methanation of CO2.

Key wordsCO2 methanation    hydrogenation    catalysis    methane    environmental science
收稿日期: 2010-11-08      出版日期: 2011-03-05
Corresponding Author(s): GONG Jinlong,Email:jlgong@tju.edu.cn   
 引用本文:   
. Methanation of carbon dioxide: an overview[J]. Frontiers of Chemical Science and Engineering, 2011, 5(1): 2-10.
Wei WANG, Jinlong GONG. Methanation of carbon dioxide: an overview. Front Chem Sci Eng, 2011, 5(1): 2-10.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-010-0528-3
https://academic.hep.com.cn/fcse/CN/Y2011/V5/I1/2
catalystpreparationa)dispersion /%reaction temperature /Kturnover number /(× 103 s-1)reference
4.3wt-% Ni/SiO2-RHAIE40.777317.2[20]
4.1wt-% Ni/SiO2-gelIE35.777311.8[20]
3.5wt-% Ni/SiO2-RHADP47.677316.2[19]
3.0 wt-% Ni/SiO2I39.05505.0[15]
Tab.1  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 Dell’Amico D B, Calderazzo F, Labella L, Marchetti F, Pampaloni G. Converting carbon dioxide into carbamato derivatives. Chemical Reviews , 2003, 103(10): 3857–3898
doi: 10.1021/cr940266m pmid:14531715
2 Mikkelsen M, Jorgensen M, Krebs F C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ Sci , 2010, 3(1): 43–81
doi: 10.1039/b912904a
3 Riduan S N, Zhang Y G. Recent developments in carbon dioxide utilization under mild conditions. Dalton Trans (Cambridge, England) , 2010, 39(14): 3347–3357
doi: 10.1039/b920163g pmid:20379526
4 Arakawa H, Aresta M, Armor J N, Barteau M A, Beckman E J, Bell A T, Bercaw J E, Creutz C, Dinjus E, Dixon D A, Domen K, DuBois D L, Eckert J, Fujita E, Gibson D H, Goddard W A, Goodman D W, Keller J, Kubas G J, Kung H H, Lyons J E, Manzer L E, Marks T J, Morokuma K, Nicholas K M, Periana R, Que L, Rostrup-Nielson J, Sachtler W M H, Schmidt L D, Sen A, Somorjai G A, Stair P C, Stults B R, Tumas W. Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chemical Reviews , 2001, 101(4): 953–996
doi: 10.1021/cr000018s pmid:11709862
5 Jessop P G, Joo F, Tai C C. Recent advances in the homogeneous hydrogenation of carbon dioxide. Coordination Chemistry Reviews , 2004, 248(21-24): 2425–2442
doi: 10.1016/j.ccr.2004.05.019
6 Omae I. Aspects of carbon dioxide utilization. Catalysis Today , 2006, 115(1-4): 33–52
doi: 10.1016/j.cattod.2006.02.024
7 Sakakura T, Choi J C, Yasuda H. Transformation of carbon dioxide. Chemical Reviews , 2007, 107(6): 2365–2387
doi: 10.1021/cr068357u pmid:17564481
8 Aresta M, Dibenedetto A. Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Trans (Cambridge, England) , 2007, (28): 2975–2992
doi: 10.1039/b700658f pmid:17622414
9 Sakakura T, Kohno K. The synthesis of organic carbonates from carbon dioxide. Chem Commun (Cambridge) , 2009, (11): 1312–1330
doi: 10.1039/b819997c pmid:19259576
10 Centi G, Perathoner S. Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catalysis Today , 2009, 148(3-4): 191–205
doi: 10.1016/j.cattod.2009.07.075
11 Lunde P J, Kester F L. Carbon dioxide methanation on a ruthenium catalyst. Industrial & Engineering Chemistry Process Design and Development , 1974, 13(1): 27–33
doi: 10.1021/i260049a005
12 VanderWiel D P, Zilka-Marco J L, Wang Y, Tonkovich A Y, Wegeng R S. In: Spring National Meeting. Atlanta: AIChe, 2000
13 Chang F W, Kuo M S, Tsay M T, Hsieh M C. Hydrogenation of CO2 over nickel catalysts on rice husk ash-alumina prepared by incipient wetness impregnation. Applied Catalysis A: General , 2003, 247(2): 309–320
doi: 10.1016/S0926-860X(03)00181-9
14 Du G A, Lim S, Yang Y H, Wang C, Pfefferle L, Haller G L. Methanation of carbon dioxide on Ni-incorporated MCM-41 catalysts: The influence of catalyst pretreatment and study of steady-state reaction. Journal of Catalysis , 2007, 249(2): 370–379
doi: 10.1016/j.jcat.2007.03.029
15 Weatherbee G D, Bartholomew C H. Hydrogenation of CO2 on group VIII metals: I. Specific activity of Ni/SiO2. Journal of Catalysis , 1981, 68(1): 67–76
doi: 10.1016/0021-9517(81)90040-3
16 Peebles D E, Goodman D W, White J M. Methanation of carbon dioxide on nickel (100) and the effects of surface modifiers. Journal of Physical Chemistry , 1983, 87(22): 4378–4387
doi: 10.1021/j100245a014
17 Vance C K, Bartholomew C H. Hydrogenation of carbon dioxide on group viii metals: III, Effects of support on activity/selectivity and adsorption properties of nickel. Applied Catalysis , 1983, 7(2): 169–177
doi: 10.1016/0166-9834(83)80005-0
18 Chang F W, Hsiao T J, Chung S W, Lo J J. Nickel supported on rice husk ash—activity and selectivity in CO2 methanation. Applied Catalysis A: General , 1997, 164(1-2): 225–236
doi: 10.1016/S0926-860X(97)00173-7
19 Chang F W, Hsiao T J, Shih J D. Hydrogenation of CO2 over a rice husk ash supported nickel catalyst prepared by deposition-precipitation. Industrial & Engineering Chemistry Research , 1998, 37(10): 3838–3845
doi: 10.1021/ie980152r
20 Chang F W, Tsay M T, Liang S P. Hydrogenation of CO2 over nickel catalysts supported on rice husk ash prepared by ion exchange. Applied Catalysis A: General , 2001, 209(1-2): 217–227
doi: 10.1016/S0926-860X(00)00772-9
21 Chang F W, Tsay M T, Kuo M S. Effect of thermal treatments on catalyst reducibility and activity in nickel supported on RHA-Al2O3 systems. Thermochimica Acta , 2002, 386(2): 161–172
doi: 10.1016/S0040-6031(01)00771-7
22 Puxley D C, Kitchener I J, Komodromos C, Perkyns N D. In preparation of catalysts. Amsterdam: Elsevier, 1983, 237
23 Sane S, Bonnier J M, Damon J P, Masson J. Raney metal catalysts: I. comparative properties of raney nickel proceeding from Ni-Al intermetallic phases. Applied Catalysis , 1984, 9(1): 69–83
doi: 10.1016/0166-9834(84)80039-1
24 Lee G D, Moon M J, Park J H, Park S S, Hong S S. Raney Ni catalysts derived from different alloy precursors Part II. CO and CO2 methanation activity. Korean J Chem Eng , 2005, 22(4): 541–546
doi: 10.1007/BF02706639
25 Sehested J, Larsen K E, Kustov A L, Frey A M, Johannessen T, Bligaard T, Andersson M P, Norskov J K, Christensen C H. Discovery of technical methanation catalysts based on computational screening. Topics in Catalysis , 2007, 45(1-4): 9–13
doi: 10.1007/s11244-007-0232-9
26 Yamasaki M, Habazaki H, Asami K, Izumiya K, Hashimoto K. Effect of tetragonal ZrO2 on the catalytic activity of Ni/ZrO2 catalyst prepared from amorphous Ni-Zr alloys. Catalysis Communications , 2006, 7(1): 24–28
doi: 10.1016/j.catcom.2005.08.005
27 Kaspar J, Fornasiero P, Graziani M. Use of CeO2-based oxides in the three-way catalysis. Catalysis Today , 1999, 50(2): 285–298
doi: 10.1016/S0920-5861(98)00510-0
28 Tsolakis A, Golunski S E. Sensitivity of process efficiency to reaction routes in exhaust-gas reforming of diesel fuel. Chemical Engineering Journal , 2006, 117(2): 131–136
doi: 10.1016/j.cej.2005.12.017
29 Perkas N, Amirian G, Zhong Z Y, Teo J, Gofer Y, Gedanken A. Methanation of carbon dioxide on Ni catalysts on mesoporous ZrO2 doped with rare earth oxides. Catalysis Letters , 2009, 130(3-4): 455–462
doi: 10.1007/s10562-009-9952-8
30 Ocampo F, Louis B, Roger A C. Methanation of carbon dioxide over nickel-based Ce0.72Zr0.28O2 mixed oxide catalysts prepared by sol-gel method. Applied Catalysis A: General , 2009, 369(1-2): 90–96
doi: 10.1016/j.apcata.2009.09.005
31 Song H L, Yang J, Zhao J, Chou L J. Methanation of carbon dioxide over a highly dispersed Ni/La2O3 catalyst. Chinese Journal of Catalysis , 2010, 31(1): 21–23
doi: 10.1016/S1872-2067(09)60036-X
32 Guo F, Chu W, Xu H Y, Zhang T. Glow discharge plasma-enhanced preparation of nickel-based catalyst for CO2 methanation. Chinese Journal of Catalysis , 2007, 28: 429–434
33 Kustov A L, Frey A M, Larsen K E, Johannessen T, Norskov J K, Christensen C H. CO methanation over supported bimetallic Ni-Fe catalysts: From computational studies towards catalyst optimization. Applied Catalysis A: General , 2007, 320: 98–104
doi: 10.1016/j.apcata.2006.12.017
34 Agnelli M, Kolb M, Mirodatos C. CO hydrogenation on a nickel catalyst: 1. Kinetics and modeling of a low-temperature sintering process. Journal of Catalysis , 1994, 148(1): 9–21
doi: 10.1006/jcat.1994.1180
35 Ku?mierz M. Kinetic study on carbon dioxide hydrogenation over Ru/gamma-Al2O3 catalysts. Catalysis Today , 2008, 137(2-4): 429–432
doi: 10.1016/j.cattod.2008.03.003
36 Abe T, Tanizawa M, Watanabe K, Taguchi A. CO2 methanation property of Ru nanoparticle-loaded TiO2 prepared by a polygonal barrel-sputtering method. Energy Environ Sci , 2009, 2(3): 315–321
doi: 10.1039/b817740f
37 Kowalczyk Z, Stolecki K, Rarńg-Pilecka W, Mi?kiewicz E, Wilczkowska E, Karpińiski Z. Supported ruthenium catalysts for selective methanation of carbon oxides at very low COx/H2 ratios. Applied Catalysis A: General , 2008, 342(1-2): 35–39
doi: 10.1016/j.apcata.2007.12.040
38 Luo L, Li S, Zhu Y. The effects of yttrium on the hydrogenation performance and surface properties of a ruthenium-supported catalyst. J Serb Chem Soc , 2005, 70(12): 1419–1425
doi: 10.2298/JSC0512419L
39 Yu K P, Yu W Y, Kuo M C, Liou Y C, Chien S H. Pt/titania-nanotube: A potential catalyst for CO2 adsorption and hydrogenation. Applied Catalysis B: Environmental , 2008, 84(1-2): 112–118
doi: 10.1016/j.apcatb.2008.03.009
40 Chen Y G, Tomishige K, Yokoyama K, Fujimoto K. Promoting effect of Pt, Pd and Rh noble metals to the Ni0.03Mg0.97O solid solution catalysts for the reforming of CH4 with CO2. Applied Catalysis A: General , 1997, 165(1-2): 335–347
doi: 10.1016/S0926-860X(97)00216-0
41 Borodziński A, Bond G C. Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts. Part I. Effect of changes to the catalyst during reaction. Catalysis Reviews. Science and Engineering , 2006, 48(2): 91–144
doi: 10.1080/01614940500364909
42 Albers P, Pietsch J, Parker S F. Poisoning and deactivation of palladium catalysts. J Mol Catal A , 2001, 173(1-2): 275–286
doi: 10.1016/S1381-1169(01)00154-6
43 Schuurman Y, Mirodatos C, Ferreira-Aparicio P, Rodríguez-Ramos I, Guerrero-Ruiz A. Bifunctional pathways in the carbon dioxide reforming of methane over MgO-promoted Ru/C catalysts. Catalysis Letters , 2000, 66(1/2): 33–37
doi: 10.1023/A:1019022917507
44 Galuszka J. Carbon dioxide chemistry during oxidative coupling of methane on a Li/MgO catalyst. Catalysis Today , 1994, 21(2-3): 321–331
doi: 10.1016/0920-5861(94)80153-3
45 Park J N, McFarland E W. A highly dispersed Pd-Mg/SiO2 catalyst active for methanation of CO2. Journal of Catalysis , 2009, 266(1): 92–97
doi: 10.1016/j.jcat.2009.05.018
46 Szailer T, Novak E, Oszko A, Erdohelyi A. Effect of H2S on the hydrogenation of carbon dioxide over supported Rh catalysts. Topics in Catalysis , 2007, 46(1-2): 79–86
doi: 10.1007/s11244-007-0317-5
47 Vayenas C G, Bebelis S, Ladas S. Dependence of catalytic rates on catalyst work function. Nature , 1990, 343(6259): 625–627
doi: 10.1038/343625a0
48 Lintz H G, Vayenas C G. Solid ion conductors in heterogeneous catalysis. Angewandte Chemie International Edition in English , 1989, 28(6): 708–715
doi: 10.1002/anie.198907081
49 Vayenas C G, Bebelis S, Neophytides S, Yentekakis I V. Non-faradaic electrochemical modification of catalytic activity in solid electrolyte cells. Applied Physics A, Materials Science & Processing , 1989, 49(1): 95–103
doi: 10.1007/BF00615471
50 Vayenas C G, Koutsodontis C G. Non-Faradaic electrochemical activation of catalysis.The Journal of Chemical Physics , 2008, 128(18): 182506–182518
doi: 10.1063/1.2824944 pmid:18532791
51 Bebelis S, Karasali H, Vayenas C G. Electrochemical promotion of CO2 hydrogenation on Rh/YSZ electrodes. Journal of Applied Electrochemistry , 2008, 38(8): 1127–1133
doi: 10.1007/s10800-008-9574-7
52 Papaioannou E I, Souentie S, Hammad A, Vayenas C G. Electrochemical promotion of the CO2 hydrogenation reaction using thin Rh, Pt and Cu films in a monolithic reactor at atmospheric pressure. Catalysis Today , 2009, 146(3-4): 336–344
doi: 10.1016/j.cattod.2009.06.008
53 Kr?mer M, Stowe K, Duisberg M, Muller F, Reiser M, Sticher S, Maier W F. The impact of dopants on the activity and selectivity of a Ni-based methanation catalyst. Applied Catalysis A: General , 2009, 369(1-2): 42–52
doi: 10.1016/j.apcata.2009.08.027
54 Falconer J L, Zagli A E. Adsorption and methanation of carbon dioxide on a nickel/silica catalyst. Journal of Catalysis , 1980, 62(2): 280–285
doi: 10.1016/0021-9517(80)90456-X
55 Weatherbee G D, Bartholomew C H. Hydrogenation of CO2 on group VIII metals: II. Kinetics and mechanism of CO2 hydrogenation on nickel. Journal of Catalysis , 1982, 77(2): 460–472
doi: 10.1016/0021-9517(82)90186-5
56 Marwood M, Doepper R, Renken A. In-situ surface and gas phase analysis for kinetic studies under transient conditions: The catalytic hydrogenation of CO2. Applied Catalysis A: General , 1997, 151(1): 223–246
doi: 10.1016/S0926-860X(96)00267-0
57 Fujita S, Terunuma H, Kobayashi H, Takezawa N. Methanation of carbon monoxide and carbon dioxide over nickel catalyst under the transient state. React Kinet Catal Lett , 1987, 33(1): 179–184
doi: 10.1007/BF02066720
58 Schild C, Wokaun A, Baiker A. On the mechanism of CO and CO2 hydrogenation reactions on zirconia-supported catalysts: a diffuse reflectance FTIR study: Part II. Surface species on copper/zirconia catalysts: implications for methanoi synthesis selectivity. Journal of Molecular Catalysis , 1990, 63(2): 243–254
doi: 10.1016/0304-5102(90)85147-A
59 Vannice M A. The catalytic synthesis of hydrocarbons from H2/CO mixtures over the group VIII metals: IV. The kinetic behavior of CO hydrogenation over Ni catalysts. Journal of Catalysis , 1976, 44(1): 152–162
doi: 10.1016/0021-9517(76)90384-5
60 Huang C P, Richardson J T. Alkali promotion of nickel catalysts for carbon monoxide methanation. Journal of Catalysis , 1978, 51(1): 1–8
doi: 10.1016/0021-9517(78)90232-4
61 Araki M, Ponec V. Methanation of carbon monoxide on nickel and nickel-copper alloys. Journal of Catalysis , 1976, 44(3): 439–448
doi: 10.1016/0021-9517(76)90421-8
62 Sehested J, Dahl S, Jacobsen J, Rostrup-Nielsen J R. Methanation of CO over nickel: Mechanism and kinetics at high H2/CO ratios.The Journal of Physical Chemistry B , 2005, 109(6): 2432–2438
doi: 10.1021/jp040239s pmid:16851238
63 Lapidus A L, Gaidai N A, Nekrasov N V, Tishkova L A, Agafonov Y A, Myshenkova T N. The mechanism of carbon dioxide hydrogenation on copper and nickel catalysts. Petroleum Chemistry , 2007, 47(2): 75–82
doi: 10.1134/S0965544107020028
64 Watwe R M, Bengaard H S, Rostrup-Nielsen J R, Dumesic J A, N?rskov J K. Theoretical studies of stability and reactivity of CHx species on Ni(111). Journal of Catalysis , 2000, 189(1): 16–30
doi: 10.1006/jcat.1999.2699
65 Ackermann M, Robach O, Walker C, Quiros C, Isern H, Ferrer S. Hydrogenation of carbon monoxide on Ni(1 1 1) investigated with surface X-ray diffraction at atmospheric pressure. Surface Science , 2004, 557(1-3): 21–30
doi: 10.1016/j.susc.2004.03.061
66 Choe S J, Kang H J, Kim S J, Park S B, Park D H, Huh D S. Adsorbed carbon formation and carbon hydrogenation for CO2 methanation on the Ni(111) surface: ASED-MO study. Bulletin of the Korean Chemical Society , 2005, 26(11): 1682–1688
doi: 10.5012/bkcs.2005.26.11.1682
67 Kim H Y, Lee H M, Park J N. Bifunctional mechanism of CO2 methanation on Pd-MgO/SiO2 catalyst: independent roles of MgO and Pd on CO2 methanation. Journal of Physical Chemistry C , 2010, 114(15): 7128–7131
doi: 10.1021/jp100938v
68 Blangenois N, Jacquemin M, Ruiz P. U S. Patent, WO2010006386, 2010-1-21
69 Jacquemin M, Beuls A, Ruiz P. Catalytic production of methane from CO2 and H2 at low temperature: Insight on the reaction mechanism. Catalysis Today , 2010, 157(1-4): 462–466
doi: 10.1016/j.cattod.2010.06.016
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed