Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2011, Vol. 5 Issue (1): 117-121   https://doi.org/10.1007/s11705-010-0535-4
  RESEARCH ARTICLE 本期目录
HPLC determination of glyoxal in aldehyde solution with 3-methyl-2-benzothiazolinone hydrazone
HPLC determination of glyoxal in aldehyde solution with 3-methyl-2-benzothiazolinone hydrazone
Yamei ZHU1(), Xiaoli YAO2, Shaohui CHEN2, Qun CUI1(), Haiyan WANG1
1. College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China; 2. Yangzi Institute, Sinopec Yangzi Petrochemical Company Ltd., Nanjing 210048, China
 全文: PDF(154 KB)   HTML
Abstract

Based on the absorption property of a diazine that can be formed by reaction of glyoxal and 3-methyl-2-benzothiazolinone hydrazone (MBTH) in the Ultraviolet-visible (UV-vis) spectral region, a HPLC method was developed for the determination of glyoxal in acetaldehyde solution. Glyoxal was derivatised from MBTH and the derivatives (diazine) were analyzed by HPLC for identification and quantification. The determination was performed on a ZORBAX Eclipse XDB-C18 column (4.6 × 250 mm, 5 mm) at 35°C with an injection volume of 10 mL, using a mixture of acetonitrile-water solvent (99∶5, v∶v) as a mobile phase with a flow rate of 0.8 mL·min-1. The proper derivative reaction conditions were the temperature of 70°C, MBTH to carbonyl molar ratio of 12, and reaction time of 110 min. The glyoxal diazine was a yellow dye with a maximum molar absorptivity at 401 nm and its retention time was 5.2 min under optimal HPLC conditions. The standard curve for glyoxal had a strong linear relationship with a regression coefficient (R2 = 0.999) in the range of 0.002–0.020 g·L-1. The analysis of glyoxal in an oxidising solution gave accurate results with a relative standard deviation (RSD) value of 0.55%. The average relative recovery was 102%. This efficient HPLC technique is also proposed for detecting other dicarbonyl compounds besides glyoxal.

Key wordsHPLC    glyoxal    3-methyl-2-benzothiazolinone hydrazone    diazine    dicarbonyl compounds
收稿日期: 2009-11-04      出版日期: 2011-03-05
Corresponding Author(s): ZHU Yamei,Email:lindazym@126.com; CUI Qun,Email:cuiqun@njut.edu.cn   
 引用本文:   
. HPLC determination of glyoxal in aldehyde solution with 3-methyl-2-benzothiazolinone hydrazone[J]. Frontiers of Chemical Science and Engineering, 2011, 5(1): 117-121.
Yamei ZHU, Xiaoli YAO, Shaohui CHEN, Qun CUI, Haiyan WANG. HPLC determination of glyoxal in aldehyde solution with 3-methyl-2-benzothiazolinone hydrazone. Front Chem Sci Eng, 2011, 5(1): 117-121.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-010-0535-4
https://academic.hep.com.cn/fcse/CN/Y2011/V5/I1/117
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
numbera)glyoxal concentration /(g·L-1)
154.0
253.8
353.8
454.2
554.5
average concentration /g·L-154.1
relative standard deviation (RSD) /%0.55
Tab.1  
standard solution concentration /(g·L-1)recovery of standard addition
0.00297%
0.010106%
0.020103%
average recovery of standard addition102%
Tab.2  
1 Nakajima K, Ohta K, Mostefaoui T A, Chai W, Utsukihara T, Horiuchi C A, Murakami M. Glyoxal sample preparation for high-performance liquid chromatographic detection of 2,4-dinitro-phenylhydrazone derivative: Suppression of polymerization and mono-derivative formation by using methanol medium. Journal of Chromatography. A , 2007, 1161(1-2): 338–341
doi: 10.1016/j.chroma.2007.06.057
2 Ke B. Production status and application of glyoxal. Petrochemical , 1994, 23: 412–415 (in Chinese)
3 Howe B K, Hardy F R F, Clarke D A. GB Patent, 1272592A, 1972
4 Vodyankina O V, Koscheev S V, Yakushko V T, Salanov A N, Boronin A I, Kurina L N. Physicochemical investigation of the copper and silver catalysts of the ethylene glycol oxidation. Journal of Molecular Catalysis A: Chemical , 2008, 158(1): 381–387
doi: 10.1016/S1381-1169(00)00109-6
5 Nede E. GB Patent, 3429929, 1969
6 Hotanahalli S S, Chandalia S B. Oxidation of acetaldehyde to glyoxal by nitric acid. J appl Chem Biotechnol , 1972, 22: 1243–1252
7 Analytical Chemistry Staff, Room of Department of Chemistry, Hangzhou University. Analytical Chemistry Manual (the second fascicule): Chemical Analysis. Beijing: Chemical Industry Press, 1996 (in Chinese)
8 Hu J, Zhang X, Wu M. Chemical analysis method of electric oxidation of glyoxal to glyoxalic acid. Journal of East China University of Science and Technology , 2001, 27: 34–37 (in Chinese)
9 Uchiyama S, Matsushima E, Tokunaga H, Otsubo Y, Ando M. Determination of orthophthalaldehyde in air using 2,4-dinitrophenylhydrazine-impregnated silica cartridge and high-performance liquid chromatography. Journal of Chromatography. A , 2006, 1116(1-2): 165–171
doi: 10.1016/j.chroma.2006.03.059
10 Strassnig S, Wenzl T, Lankmayr E P. Microwave-assisted derivatization of volatile carbonyl compounds with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine. Journal of Chromatography. A , 2000, 891(2): 267–273
doi: 10.1016/S0021-9673(00)00642-7
11 Cancho B, Ventura F, Galceran M T. Determination of aldehydes in drinking water using pentafluorobenzylhydroxylamine derivatization and solid-phase microextraction. Journal of Chromatography. A , 2001, 943(1): 1–13
doi: 10.1016/S0021-9673(01)01437-6
12 Culleré L, Cacho J, Ferreira V. Analysis for wine C5-C8 aldehydes through the determination of their O-(2,3,4,5,6-pentafluorobenzyl)oximes formed directly in the solid phase extraction cartridge. Analytica Chimica Acta , 2004, 524(1-2): 201–206
doi: 10.1016/j.aca.2004.03.025
13 Wang Q, O’Reilly J, Pawliszyn J. Determination of low-molecular mass aldehydes by automated headspace solid-phase microextraction with in-fibre derivatisation. Journal of Chromatography. A , 2005, 1071(1-2): 147–154
doi: 10.1016/j.chroma.2004.09.031
14 Pacolay B D, Ham J E, Wells J R. Use of solid-phase microextraction to detect and quantify gas-phase dicarbonyls in indoor environments. Journal of Chromatography. A , 2006, 1131(1-2): 275–280
doi: 10.1016/j.chroma.2006.08.069
15 Svensson S, Larstad M, Broo K, Anna-Carin O. Determination of aldehydes in human breath by on-fibre derivatization, solid-phase microextraction and GC-MS. Journal of Chromatography. A , 2007, 860: 86–91
16 Beránek J, Kubátová A. Evaluation of solid-phase microextraction methods for determination of trace concentration aldehydes in aqueous solution. Journal of Chromatography. A , 2008, 1209(1-2): 44–54
doi: 10.1016/j.chroma.2008.09.013
17 Smith D F, Kleindienst T E, Hudgens E E. Improved high-performance liquid chromatographic method for artifact-free measurements of aldehydes in the presence of ozone using 2,4-dinitrophenylhydrazine. Journal of Chromatography. A , 1989, 483: 431–436
doi: 10.1016/S0021-9673(01)93146-2
18 Druzik C M, Grosjean D, Neste A V, Parmar S S. Sampling of atmospheric carbonyls with small DNPH-coating C18 cartridges and liquid chromatography analysis with diode array detection. International Journal of Environmental Analytical Chemistry , 1990, 38(4): 495–512
doi: 10.1080/03067319008026952
19 Grosjean E, Grosjean D. Liquid chromatographic analysis of C1-C10 carbonyls. International Journal of Environmental Analytical Chemistry , 1995, 61(1): 47–64
doi: 10.1080/03067319508026236
20 METHOD. 8315A. Determination of Carbonyl Compounds by High Performance Liquid Chromatography (HPLC), U.S. Environmental Protection Agency , 1996
21 Ho S S, Yu J Z. Determination of airborne carbonyls: comparison of a thermal desorption/GC method with the standard DNPH/HPLC method. Environmental Science & Technology , 2004, 38(3): 862–870
doi: 10.1021/es034795w
22 Zhu Y, Cui Q, Wang H. Determination of glyoxal and glyoxalic acid in aldehyde solution by high performance liquid chromatography. J Chromatogr , 2010, 28(1): 59–63 (in Chinese)
23 Neumann F W. Spectrophotometric determination of glyoxal with 3-methyl-2-benzothiazolinone hydrazone. Analytical Chemistry , 1969, 41(14): 2077–2078
doi: 10.1021/ac50159a053
24 Igawa M, Munger J W, Hoffmann M R. Analysis of aldehydes in cloud- and fogwater samples by HPLC with a postcolumn reaction detector. Environmental Science & Technology , 1989, 23(5): 556–561
doi: 10.1021/es00063a007
25 Zurek G, Karst U. Microplate photometric determination of aldehydes in disinfectant solutions. Analytica Chimica Acta , 1997, 351(1-3): 247–257
doi: 10.1016/S0003-2670(97)00363-2
26 General Administration of Quality Supervision Inspection and Quarantine of the People’s Republic of China (AQSIQ). GB/T 6324.5-2008
27 Zhu Y, Jiang Y, Cui Q, Wang H. Study on oxidation of acetaldehyde to glyoxal by nitric acid chemical reaction engineering and technology. Chemical Reaction Engineering and Technology , 2009, 25: 175–179 (in Chinese)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed