The mitigation of greenhouse gas emissions to acceptable levels is arguably the greatest environmental challenge these days. Vast utilization of fossil fuels and forest destruction are main causes of CO2 increase in the atmosphere. Carbon dioxide sequestration that consists of separation, transportation and utilization or storage of CO2, is one way for reduction of its emission, in which the most costly section is separation. Different methods can be used for carbon dioxide separation such as absorption, membrane separation, adsorption and cryogenic distillation. Economic, technical and environmental issues should be considered in selection of the technology for particular application. Carbon dioxide concentration, temperature, pressure and flow rate are influential operating parameters in the selection of the appropriate separation method. Nowadays, absorption is the worldwide industrial separation method. New researches are focused on developing new stable solvents and efficient column configuration with suitable internals to minimize pressure drop. Membrane separation and adsorption (PSA type) are other long-term alternatives that can increase separation efficiency and decrease separation cost. The level of energy consumption in various separation methods are in the order: chemical absorption>physical absorption>membrane separation. Because of high investment costs, current separation technologies are suitable for large concentrated sources. In the present paper, different processes for carbon dioxide separation are investigated and compared. Available technologies and commercial plants for CO2 sequestration are provided.
. Carbon dioxide sequestration in petrochemical industries with the aim of reduction in greenhouse gas emissions[J]. Frontiers of Chemical Science and Engineering, 2011, 5(2): 173-178.
Maryam Takht Ravanchi, Saeed Sahebdelfar, Farnaz Tahriri Zangeneh. Carbon dioxide sequestration in petrochemical industries with the aim of reduction in greenhouse gas emissions. Front Chem Sci Eng, 2011, 5(2): 173-178.
- suitable for lean streams of CO2 such as exhaust gases
- high energy requirement for solvent recovery
- operating at normal temperature and pressure
- solvent
- commercial technology
- high solvent loss in case of presence of impurities in feed
physical absorption
- absorption and stripping section
- less energy requirement
- need high operating pressure
- solvent
- less sensitivity of solvent to feed impurities
- better efficiency for gases with high concentration of CO2
adsorption
- bed(s) of adsorbent
- well recovery of CO2
- need very high operating pressure
membrane
- membrane filter(s)
- economy of scale and space requirement
- need very high operating pressure
- need to recycle streams
- very costly process
Tab.1
process
MEA process
K2CO3 process
MEA process
K2CO3 process
CO2 source
power plant flue gas
power plant flue gas
NH3 syngas
NH3 syngas
feed CO2 concentration/vol-%
8.5
8.5
12.1
12.1
absorber feed temperature/°F
110
110
150
265
absorber feed pressure/psia
15.8
15.8
395
394
absorber feed partial pressure/psia
1.47
1.47
69.9
63.4
product CO2 pressure/psia
26
21
22
20
absorber solvent
30 wt-% MEA in H2O
25 wt-% K2CO3 equivalent
35 wt-% MEA in H2O
30 wt-% K2CO3 equivalent
capital investment/($ million)
battery limits
16.2
24.9
15.9
11.3
off-sites
14.0
12.9
6.1
4.6
total fixed capital
30.2
37.8
22.0
15.9
CO2 regenerator thermal energy/[Btu/(lb·mol)]
71900
75300
45700
35300
product value/(¢·lb-1)
2.51
2.92
1.28
1.01
Tab.2
location
capacity
feedstock
CO2 use
reference
China
53000 tones/year
NH3 plant reformer exhaust
urea
http://web.mit.edu/energylab/www/hjherzog
India
49500 tones/year
NH3 plant reformer exhaust
urea
http://web.mit.edu/energylab/www/hjherzog
Brazil
29700 tones/year
gas boiler
food-grade CO2
http://web.mit.edu/energylab/www/hjherzog
Algeria
1 million tones/year
natural gas sweetening
EOR (enhanced oil recovery)
[7]
North sea
1million tones/year
natural gas sweetening
EOR
[7]
France
75000 tones/year
heavy oil
onshore sequestration in depleted natural gas field
http://sequestration.mit.edu/index.html
Western Norway
1.2 million tones/year
natural gas
sequestration in seabed and/or EOR
http://sequestration.mit.edu/index.html
Norway
2.5 million tones/year
natural gas
sequestration
http://sequestration.mit.edu/index.html
California
4-5 million tones/year
petcoke to hydrogen
EOR
http://sequestration.mit.edu/index.html
Tab.3
1
Bhaskararao B K. Carbon capture in petrochemical operations. Petroleum technology quarterly , 2007, 12: 109-111
2
Stewart C, Hessami M A. A study of methods of carbon dioxide capture and sequestration––the sustainability of a photosynthetic bioreactor approach. Energy Conversion and Management , 2005, 46(3): 403-420 doi: 10.1016/j.enconman.2004.03.009
3
Omae I. Aspects of carbon dioxide utilization. Catalysis Today , 2006, 115(1-4): 33-52 doi: 10.1016/j.cattod.2006.02.024
4
Arakawa H, Aresta M, Armor J N, Barteau M A, Beckman E J, Bell A T, Bercaw J E, Creutz C, Dinjus E, Dixon D A, Domen K, DuBois D L, Eckert J, Fujita E, Gibson D H, Goddard W A, Goodman D W, Keller J, Kubas G J, Kung H H, Lyons J E, Manzer L E, Marks T J, Morokuma K, Nicholas K M, Periana R, Que L, Rostrup-Nielson J, Sachtler W M, Schmidt L D, Sen A, Somorjai G A, Stair P C, Stults B R, Tumas W. Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chemical Reviews , 2001, 101(4): 953-996 doi: 10.1021/cr000018s
5
Zevenhoven R, Eloneva S, Teir S. Chemical fixation of CO2 in carbonates: routes to valuable products and long-term storage. Catalysis Today , 2006, 115(1-4): 73-79 doi: 10.1016/j.cattod.2006.02.020
6
Song C. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catalysis Today , 2006, 115(1-4): 2-32 doi: 10.1016/j.cattod.2006.02.029
7
Metz B, Davidson O, Coninck H, Loos M, Meyer L. Carbon Dioxide Capture and Storage. London: Cambridge University Press, 2005, 107-171
8
Menon A, Duss M, Bachmann C. Post combustion capture of CO2. Petroleum technology quarterly , 2009, 2: 115-121
9
Thomas D C. Carbon Dioxide Capture for Storage in Deep Geologic Formations. London: Elsevier, 2005, 91-97
10
Olajire A A. CO2 capture and separation technologies for end-of-pipe applications–a review. Energy , 2010, 35(6): 2610-2628 doi: 10.1016/j.energy.2010.02.030
11
Gorji A H, Kaghazchi T. CO2/H2 separation by facilitated transport membranes immobilized with aqueous single and mixed amine solutions: experimental and modeling study. Journal of Membrane Science , 2008, 325(1): 40-49 doi: 10.1016/j.memsci.2008.06.063
12
Heydari G A, Kaghazchi T, Kargari A. Analytical approximate solution of competitive facilitated transport of acid gases through liquid membranes. Desalination , 2009, 235(1-3): 245-263 doi: 10.1016/j.desal.2008.02.010
13
Gorji A H, Kaghazchi T. Mathematical modeling of CO2 facilitated transport through liquid membranes containing amines as carrier. Canadian Journal of Chemical Engineering , 2008, 86(6): 1039-1046 doi: 10.1002/cjce.20107
14
Pennline H W, Luebke D R, Jones K L, Myers C R, Morsi B I, Heintz Y J, Ilconich J B. Progress in carbon dioxide capture and separation research for gasification-based power generation point sources. Fuel Processing Technology , 2008, 89(9): 897-907 doi: 10.1016/j.fuproc.2008.02.002
15
Yang H, Xu Z, Fan M, Gupta R, Slimane R B, Bland A E, Wright I. Progress in carbon dioxide separation and capture: a review. Journal of Environmental Sciences (China) , 2008, 20(1): 14-27 doi: 10.1016/S1001-0742(08)60002-9
16
Granite E J, O’Brien T. Review of novel methods for carbon dioxide separation from flue and fuel gases. Fuel Processing Technology , 2005, 86(14-15): 1423-1434 doi: 10.1016/j.fuproc.2005.01.001
17
Pennline H W, Granite E J, Luebke D R, Kitchin J R, Landon J, Weiland L M. Separation of CO2 from flue gas using electrochemical cells. Fuel , 2010, 89(6): 1307-1314 doi: 10.1016/j.fuel.2009.11.036
18
Edmonds J A, Wise M A, Dooley J J, Kim S H, Smith S J, Runci P J, Clarke L E, Malone E L, Stokes G M. Global Energy Technology Strategy. United States of America: Battelle Memorial Institute , 2007, 94-105
19
Kovvali A S, Sirkar K K. Carbon dioxide separation with novel solvents as liquid membranes. Industrial & Engineering Chemistry Research , 2002, 41(9): 2287-2295 doi: 10.1021/ie010757e
20
Dowell N M, Galindo A, Jackson G, Adjiman C S. Integrated solvent and process design for the reactive separation of CO2 from flue gas. Computer Aided Chemical Engineering , 2010, 28: 1231-1236 doi: 10.1016/S1570-7946(10)28206-8
21
Yamasaki A. An overview of CO2 mitigation options for global warming—emphasizing CO2 sequestration options. Journal of Chemical Engineering of Japan , 2003, 36(4): 361-375 doi: 10.1252/jcej.36.361
22
Ahmad A L, Sunarti A R, Lee K T, Fernando W J N. CO2 removal using membrane gas absorption. International Journal of Greenhouse Gas Control , 2010, 4(3): 495-498 doi: 10.1016/j.ijggc.2009.12.003
23
Nirula S C, Ashraf M.CO2 separation. Process Economic Program (PEP) Report 180, Chapter 4 , 39-92
24
Tabe-Mohammadi A. A review of the applications of membrane separation technology in natural gas treatment. Separation Science and Technology , 1999, 34(10): 2095-2111 doi: 10.1081/SS-100100758
25
Anson M, Marchese J, Garis E, Ochoa N, Pagliero C. ABS copolymer-activated carbon mixed matrix membranes for CO2/CH4 separation. Journal of Membrane Science , 2004, 243(1-2): 19-28 doi: 10.1016/j.memsci.2004.05.008
26
Feron P H P, Jansen A E, Klaassen R. Membrane technology in carbon dioxide removal. Energy Conversion and Management , 1992, 33(5-8): 421-428 doi: 10.1016/0196-8904(92)90039-Y
27
Okabe K, Mano H, Fujioka Y.Separation and recovery of carbon dioxide by a membrane flash process. Int J of greenhouse gas control , 2008, 2: 485-491
28
Jansen D, Dijkstra J W, van den Brink R W, Peters T A, Stange M, Bredesen R, Goldbach A, Xu H Y, Gottschalk A, Doukelis A. Hydrogen membrane reactors for CO2 capture. Energy Procedia , 2009, 1(1): 253-260 doi: 10.1016/j.egypro.2009.01.036
29
Powell C E, Qiao G G. Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. Journal of Membrane Science , 2006, 279(1-2): 1-49 doi: 10.1016/j.memsci.2005.12.062
30
Ho M T, Allinson G, Wiley D E. Comparison of CO2 separation options for geo-sequestration: are membranes competitive. Desalination , 2006, 192(1-3): 288-295 doi: 10.1016/j.desal.2005.04.135
31
Ebner A D, Ritter J A. State-of-the-art adsorption and membrane separation processes for carbon dioxide production from carbon dioxide emitting industries. Separation Science and Technology , 2009, 44(6): 1273-1421 doi: 10.1080/01496390902733314
32
Plaza M G, Pevida C, Martín C F, Fermoso J, Pis J J, Rubiera F. Developing almond shell-derived activated carbons as CO2 adsorbents. Separation and Purification Technology , 2010, 71(1): 102-106 doi: 10.1016/j.seppur.2009.11.008
33
Chaffee A L, Knowles G P, Liang Z, Zhang J, Xiao P, Webley P A. CO2 capture by adsorption: materials and process development. International Journal of Greenhouse Gas Control , 2007, 1(1): 11-18 doi: 10.1016/S1750-5836(07)00031-X
35
Zanganeh K E, Shafeen A, Salvador C. CO2 capture and development of an advanced pilot-scale cryogenic separation and compression unit. Energy Procedia , 2009, 1(1): 247-252 doi: 10.1016/j.egypro.2009.01.035
36
Tuinier M J, van Sint Annaland M, Kramer G J, Kuipers J A M. Cryogenic CO2 capture using dynamically operated packed beds. Chemical Engineering Science , 2010, 65(1): 114-119 doi: 10.1016/j.ces.2009.01.055