Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2011, Vol. 5 Issue (3): 339-342   https://doi.org/10.1007/s11705-010-0569-7
  RESEARCH ARTICLE 本期目录
PSS sorbents for removing trace hydrogen sulfide in methane
PSS sorbents for removing trace hydrogen sulfide in methane
Limei ZHONG1(), Li ZHOU2
1. Qingdao University of Science & Technology, Qingdao 266042, China; 2. High Pressure Adsorption Laboratry, Tianjin University, Tianjin 300072, China
 全文: PDF(148 KB)   HTML
Abstract

Sorbents of the pressure swing sorption process (PSS) to remove trace amount of H2S (190 ppm) contained in methane were experimentally studied. The sorbents consist of adsorbent carrier (silica gel or activated carbon) and absorbent which spreads outside the carrier granules’ pores (triethanolamine, TEA or N-methyl-2-pyrrolidone, NMP). The results of breakthrough and regeneration tests show that silica gel is more suitable to be the carrier than activated carbon and TEA is more suitable to be the absorbent than NMP. The loaded absorbent could enlarge the sorption capacity of H2S considerably. And the BET tests indicate that the absorbent deposits on the surface of the carrier’s pores and can reduce the mesopores’ size and block the micropores.

Key wordspressure swing sorption    H2S    methane    carrier    absorbent
收稿日期: 2010-11-16      出版日期: 2011-09-05
Corresponding Author(s): ZHONG Limei,Email:zhonglimei@qust.edu.cn   
 引用本文:   
. PSS sorbents for removing trace hydrogen sulfide in methane[J]. Frontiers of Chemical Science and Engineering, 2011, 5(3): 339-342.
Limei ZHONG, Li ZHOU. PSS sorbents for removing trace hydrogen sulfide in methane. Front Chem Sci Eng, 2011, 5(3): 339-342.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-010-0569-7
https://academic.hep.com.cn/fcse/CN/Y2011/V5/I3/339
carrierbulk density /(g·mL-1)brunauer-emmett-Teller surface area /(m2·g-1)pore volume /(mL·g-1)average pore size /nmparticle size /mm
silica gel0.423350.85100.28-0.45
JX-1040.508120.34381.70.28-0.45
Tab.1  
absorbentexperimental formulaboiling point /°C (760 mmHg)freezing point /°Cvapor pressure /Paviscosity /cp
NMPC5H9ON202-24.4530.5 (60°C)1.65 (25°C)
TEAC6H15O3N36021.21.3 (20°C)15 (100°C)
Tab.2  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
load ratio09.714.319.423.026.032.5
specific area /(m2·g-1)388352302257242214197
pore volume /(mL·g-1)1.0010.9550.9180.8860.8710.8480.824
Tab.3  
Fig.8  
1 Kersen ü, Holappa L. Surface characterization and the gas response of a mixed, Fe2O3-Fe2(MoO4)3, oxide to low concentrations of H2S in air. Electroanalysis , 2008, 20(22): 2442–2446
2 Tian S, Mo H, Zhang R, Ning P, Zhou T. Enhanced removal of hydrogen sulfide from a gas stream by 3-aminopropyltriethoxysilane-surface-functionalized activated carbon. Adsorption , 2009, 15(5-6): 477–488
3 Ivanov E S, Brodskii M L, Timonin A V. Corrosion resistance and tendency towards corrosion-mechanical failure of new pipe steels in hydrogen sulfide-containing media in Northern Russia oil fields. Metallurgist , 2009, 53(7-8): 421–428
4 Gabbay D S, De Roos F, Perrone J. Twenty-foot fall averts fatality from massive hydrogen sulfide exposure. Journal of Emergency Medicine , 2001, 20(2): 141–144
5 Polychronopoulou K, Galisteo F C, Granados M L, Fierro J L G, Bakas T, Efstathiou A M. Novel Fe-Mn-Zn-Ti-O mixed-metal oxides for the low-temperature removal of H2S from gas streams in the presence of H2, CO2, and H2O. Journal of Catalysis , 2005, 236(2): 205–220
6 Ramirez M, Gómez J M, Cantero D, Páca J, Halecky M, Kozliak E I, Sobotka M. Hydrogen sulfide removal from air by Acidithiobacillus thiooxidans in a trickle bed reactor. Folia Microbiologica , 2009, 54(5): 409–414
7 Polychronopoulou K, Fierro J L G, Efstathiou A M. Novel Zn-Ti-based mixed metal oxides for low-temperature adsorption of H2S from industrial gas streams. Applied Catalysis B: Environmental , 2005, 57(2): 125–137
8 Novochinskii I I, Song C, Ma X, Liu X, Shore L, Lampert J, Farrauto R J. Low-temperature H2S removal from steam-containing gas mixtures with ZnO for fuel cell application. 1. ZnO particles and extrudates. Energy & Fuels , 2004, 18(2): 576–583
9 Xing C, Zhang Y, Yan W, Guo L. Band structure-controlled solid solution of Cd1-xZnxS photocatalyst for hydrogen production by water splitting. International Journal of Hydrogen Energy , 2006, 31(14): 2018–2024
10 Jin Y M, Veiga M C, Kennes C. Effects of pH, CO2, and flow pattern on the autotrophic degradation of hydrogen sulfide in a biotrickling filter. Biotechnology and Bioengineering , 2005, 92(4): 462–471
11 Zhou L, Yu M, Zhong L ,Zhou Y. Feasiblility study on pressure swing sorption for removing H2S from natural gas. Chemical Engineering Science , 2004, 59(12): 2401–2406
12 Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science , 1998, 279(5350): 548–552
13 Sing K. The use of nitrogen adsorption for the characterization of porous materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2001, 187-188: 3–9
14 Wang X. Chemical and morphological characterization of mesoporous material supported copper oxide nanoparticles for potential application. Journal of Porous Materials ,
doi: 10.1007/s10934-010-9418-9
doi: 10.1007/s10934-010-9418-9
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed