Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2011, Vol. 5 Issue (2): 215-226   https://doi.org/10.1007/s11705-010-1012-9
  RESEARCH ARTICLE 本期目录
Capture of carbon dioxide over porous solid adsorbents lithium silicate, lithium aluminate and magnesium aluminate at pre-combustion temperatures
Capture of carbon dioxide over porous solid adsorbents lithium silicate, lithium aluminate and magnesium aluminate at pre-combustion temperatures
P. V. Korake, A. G. Gaikwad()
CE & PD Division, National Chemical Laboratory, Pune 411 008, India
 全文: PDF(747 KB)   HTML
Abstract

The capturing process for carbon dioxide over porous solid adsorbents such as lithium silicate, lithium aluminate, and magnesium aluminate at pre- combustion temperatures was studied. Lithium silicate was prepared by the sol gel and solid fusion methods. The lithium silicate adsorbent was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), nuclear magnetic resonance (NMR), and surface area. The capturing of carbon dioxide over lithium silicate, lithium aluminate, and magnesium aluminate was explored at different experimental conditions such as exposure time, temperature variation, and exposure carbon dioxide pressure. The capturing process for carbon dioxide was investigated over these adsorbents with variation of their metal mole ratios. The effect of the addition of (promoter) sodium, potassium, and cesium in the lithium silicate adsorbent was explored to investigate the variation of the capture of carbon dioxide over these adsorbents.

Key wordscapturing CO2    lithium silicate    lithium aluminate    magnesium aluminate
收稿日期: 2010-04-15      出版日期: 2011-06-05
Corresponding Author(s): Gaikwad A. G.,Email:ag.gaikwad@ncl.res.in   
 引用本文:   
. Capture of carbon dioxide over porous solid adsorbents lithium silicate, lithium aluminate and magnesium aluminate at pre-combustion temperatures[J]. Frontiers of Chemical Science and Engineering, 2011, 5(2): 215-226.
P. V. Korake, A. G. Gaikwad. Capture of carbon dioxide over porous solid adsorbents lithium silicate, lithium aluminate and magnesium aluminate at pre-combustion temperatures. Front Chem Sci Eng, 2011, 5(2): 215-226.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-010-1012-9
https://academic.hep.com.cn/fcse/CN/Y2011/V5/I2/215
Fig.1  
No.adsorbentsurface area /(m2·g-1)
1magnesium aluminum oxide (by sol gel method, Mg/Al= 3 mol ratio)87.99
2lithium silicate (by sol gel method, Li/Si= 2 mol ratio)9.26
3lithium silicate (by sol gel method, Li/Si= 4 mol ratio)16.83
4lithium aluminum oxide (by sol gel method, Li/Al= 4 mol ratio)2.58
5lithium silicate (by solid fusion method, Li/Si= 4 mol ratio)37.97
Tab.1  
No.adsorbentacidity /(mmol·g-1)
1magnesium aluminate (Mg/Al= 4 mol ratio, sol gel method)0.464
2lithium aluminate (Li/Al= 4 mol ratio, sol gel method)0.351
3lithium silicate (Li/Si= 4 mol ratio, solid fusion method)0.388
Tab.2  
Fig.2  
Fig.3  
Fig.4  
No.adsorbentbinding energy /eV
1oxygen532.11
2carbon284.63
3lithium54.57
4silica102.94
Tab.3  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
1 Zelenak V, Halamova D, Gaberova L, Bloch E, Llewellyn P. Amine modified SBA-12 mesoporous silica for carbon dioxide capture: effect of amine basicity on sorption properties. Micro Meso Mater , 2008, 116(1-3): 358–364
doi: 10.1016/j.micromeso.2008.04.023
2 Hyun S H, Song J K, Kwak B I, Kim J H, Hong S A. Synthesis of ZSM-5 zeolite composite membranes for CO2 separation. Journal of Materials Science , 1999, 34(13): 3095–3103
doi: 10.1023/A:1004644832342
3 Siriwardane R V, Shen M S, Fisher E P. Adsorption of CO2 on zeolites at moderate temperature. Energy & Fuels , 2005, 19(3): 1153–1159
doi: 10.1021/ef040059h
4 Raj C J, Lincoln M B, Das S J. Synthesis and characterization of doped lithium aluminate nanocrystalline particles by sol-gel method. Crystal Research and Technology , 2008, 43(8): 823–827
doi: 10.1002/crat.200811165
5 Tatiana A R, Julio C M, Heriberto P. Thermochemical capture of carbon dioxide on lithium aluminates (LiAlO2 and Li5AlO4): a new option for the CO2 absorption. Journal of Physical Chemistry A , 2009, 113(25): 6919–6923
doi: 10.1021/jp902501v
6 Georgina M G, Daniel C, Heriberto P S B. Low temperature synthesis of Li2SiO3: effect on its morphological and textural properties. Res Lett Mater Sci , 2008: 1–4
7 T Zhang B, Easteal A J, Edmonds N R, Bhattacharyya D. Sol-gel preparation and characterization of lithium disilicate glass-ceramic. Journal of the American Ceramic Society , 2007, 90(5): 1592–1596
8 Bretado M E, Velderrain V G, Gutiérrez D L, Collins-Martínez V, Ortiz A L. A new synthesis route to Li4SiO4 as CO2 catalytic/sorbent. Catal Today , 2005, 107-108: 863–867
9 Gauer C, Heschel W. Doped lithium orthosilicate for absorption of carbon dioxide. Journal of Materials Science , 2006, 41(8): 2405–2409
doi: 10.1007/s10853-006-7070-1
10 Kato M, Yoshikawa S, Nakagawa K. Carbon dioxide absorption by lithium orthosilicate in a wide range of temperature and carbon dioxide concentrations. Journal of Materials Science Letters , 2002, 21(6): 485–487
doi: 10.1023/A:1015338808533
11 Kato M, Nakagawa K, Essaki K, Maezawa Y, Takeda S, Kogo R, Hagiwara Y. Novel CO2 absorbents using lithium containing oxide. Int J Appl Ceram Technol , 2005, 2(6): 467–475
doi: 10.1111/j.1744-7402.2005.02047.x
12 Kato M, Maezeawa Y, Takeda S, Hagiwara Y, Kogo R. Pre-combustion CO2 capture using ceramic absorbent and methane steam reforming. Journal of the Ceramic Society of Japan , 2005, 113(1315): 252–254
doi: 10.2109/jcersj.113.252
13 Yamaguchi T, Niitsuma T, Nair B N, Nakagawa K. Lithium silicate based membranes for high temperature CO2 separation. Journal of Membrane Science , 2007, 294(1-2): 16–21
doi: 10.1016/j.memsci.2007.01.028
14 Yong Z, Mata V, Rodrigues A E. Adsorption of carbon dioxide onto hydrotalcite-like compounds (HTlcs) at high temperatures. Industrial & Engineering Chemistry Research , 2001, 40(1): 204–209
doi: 10.1021/ie000238w
15 Kimura S, Adachi M, Noda R, Horio M. Particle design and evaluation of dry CO2 recovery sorbent with a liquid holding capability. Chemical Engineering Science , 2005, 60(14): 4061–4071
doi: 10.1016/j.ces.2005.02.035
16 Ding Y, Alpay E. Equilibria and kinetics of CO2 adsorption on hydrotalcite adsorbent. Chemical Engineering Science , 2000, 55(17): 3461–3474
doi: 10.1016/S0009-2509(99)00596-5
17 Huston N D, Attwood B C. High temperature adsorption of CO2 on various hydrotalcite like compounds. Adsorption , 2008, 14(6): 781–789
doi: 10.1007/s10450-007-9085-6
18 Moreira R F P M, Soares J L, Casarin G L, Rodrigues A. Adsorption of CO2 on hydrotalcite-like compounds in a fixed bed. Separation Science and Technology , 2006, 41(2): 341–357
doi: 10.1080/01496390500496827
19 Tagaya H, Tsunaki K, Hasegawa M, Karasu M, Chiba K. Adsorption of CO2 into hydrotalcite like compound. Bul Yam Univ (Eng) , 1992, 22: 21–26
20 Wang X P, Yu J J, Cheng J, Hao Z P, Xu Z P. High-temperature adsorption of carbon dioxide on mixed oxides derived from hydrotalcite-like compounds. Environmental Science & Technology , 2008, 42(2): 614–618
doi: 10.1021/es072085a
21 Othman M R, Rasid N M, Fernando W J N. Mg-Al hydrotalcite coating on zeolites for improved carbon dioxide adsorption. Chemical Engineering Science , 2006, 61(5): 1555–1560
doi: 10.1016/j.ces.2005.09.011
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed