The capturing process for carbon dioxide over porous solid adsorbents such as lithium silicate, lithium aluminate, and magnesium aluminate at pre- combustion temperatures was studied. Lithium silicate was prepared by the sol gel and solid fusion methods. The lithium silicate adsorbent was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), nuclear magnetic resonance (NMR), and surface area. The capturing of carbon dioxide over lithium silicate, lithium aluminate, and magnesium aluminate was explored at different experimental conditions such as exposure time, temperature variation, and exposure carbon dioxide pressure. The capturing process for carbon dioxide was investigated over these adsorbents with variation of their metal mole ratios. The effect of the addition of (promoter) sodium, potassium, and cesium in the lithium silicate adsorbent was explored to investigate the variation of the capture of carbon dioxide over these adsorbents.
Corresponding Author(s):
Gaikwad A. G.,Email:ag.gaikwad@ncl.res.in
引用本文:
. Capture of carbon dioxide over porous solid adsorbents lithium silicate, lithium aluminate and magnesium aluminate at pre-combustion temperatures[J]. Frontiers of Chemical Science and Engineering, 2011, 5(2): 215-226.
P. V. Korake, A. G. Gaikwad. Capture of carbon dioxide over porous solid adsorbents lithium silicate, lithium aluminate and magnesium aluminate at pre-combustion temperatures. Front Chem Sci Eng, 2011, 5(2): 215-226.
Zelenak V, Halamova D, Gaberova L, Bloch E, Llewellyn P. Amine modified SBA-12 mesoporous silica for carbon dioxide capture: effect of amine basicity on sorption properties. Micro Meso Mater , 2008, 116(1-3): 358–364 doi: 10.1016/j.micromeso.2008.04.023
2
Hyun S H, Song J K, Kwak B I, Kim J H, Hong S A. Synthesis of ZSM-5 zeolite composite membranes for CO2 separation. Journal of Materials Science , 1999, 34(13): 3095–3103 doi: 10.1023/A:1004644832342
3
Siriwardane R V, Shen M S, Fisher E P. Adsorption of CO2 on zeolites at moderate temperature. Energy & Fuels , 2005, 19(3): 1153–1159 doi: 10.1021/ef040059h
4
Raj C J, Lincoln M B, Das S J. Synthesis and characterization of doped lithium aluminate nanocrystalline particles by sol-gel method. Crystal Research and Technology , 2008, 43(8): 823–827 doi: 10.1002/crat.200811165
5
Tatiana A R, Julio C M, Heriberto P. Thermochemical capture of carbon dioxide on lithium aluminates (LiAlO2 and Li5AlO4): a new option for the CO2 absorption. Journal of Physical Chemistry A , 2009, 113(25): 6919–6923 doi: 10.1021/jp902501v
6
Georgina M G, Daniel C, Heriberto P S B. Low temperature synthesis of Li2SiO3: effect on its morphological and textural properties. Res Lett Mater Sci , 2008: 1–4
7
T Zhang B, Easteal A J, Edmonds N R, Bhattacharyya D. Sol-gel preparation and characterization of lithium disilicate glass-ceramic. Journal of the American Ceramic Society , 2007, 90(5): 1592–1596
8
Bretado M E, Velderrain V G, Gutiérrez D L, Collins-Martínez V, Ortiz A L. A new synthesis route to Li4SiO4 as CO2 catalytic/sorbent. Catal Today , 2005, 107-108: 863–867
9
Gauer C, Heschel W. Doped lithium orthosilicate for absorption of carbon dioxide. Journal of Materials Science , 2006, 41(8): 2405–2409 doi: 10.1007/s10853-006-7070-1
10
Kato M, Yoshikawa S, Nakagawa K. Carbon dioxide absorption by lithium orthosilicate in a wide range of temperature and carbon dioxide concentrations. Journal of Materials Science Letters , 2002, 21(6): 485–487 doi: 10.1023/A:1015338808533
11
Kato M, Nakagawa K, Essaki K, Maezawa Y, Takeda S, Kogo R, Hagiwara Y. Novel CO2 absorbents using lithium containing oxide. Int J Appl Ceram Technol , 2005, 2(6): 467–475 doi: 10.1111/j.1744-7402.2005.02047.x
12
Kato M, Maezeawa Y, Takeda S, Hagiwara Y, Kogo R. Pre-combustion CO2 capture using ceramic absorbent and methane steam reforming. Journal of the Ceramic Society of Japan , 2005, 113(1315): 252–254 doi: 10.2109/jcersj.113.252
13
Yamaguchi T, Niitsuma T, Nair B N, Nakagawa K. Lithium silicate based membranes for high temperature CO2 separation. Journal of Membrane Science , 2007, 294(1-2): 16–21 doi: 10.1016/j.memsci.2007.01.028
14
Yong Z, Mata V, Rodrigues A E. Adsorption of carbon dioxide onto hydrotalcite-like compounds (HTlcs) at high temperatures. Industrial & Engineering Chemistry Research , 2001, 40(1): 204–209 doi: 10.1021/ie000238w
15
Kimura S, Adachi M, Noda R, Horio M. Particle design and evaluation of dry CO2 recovery sorbent with a liquid holding capability. Chemical Engineering Science , 2005, 60(14): 4061–4071 doi: 10.1016/j.ces.2005.02.035
16
Ding Y, Alpay E. Equilibria and kinetics of CO2 adsorption on hydrotalcite adsorbent. Chemical Engineering Science , 2000, 55(17): 3461–3474 doi: 10.1016/S0009-2509(99)00596-5
17
Huston N D, Attwood B C. High temperature adsorption of CO2 on various hydrotalcite like compounds. Adsorption , 2008, 14(6): 781–789 doi: 10.1007/s10450-007-9085-6
18
Moreira R F P M, Soares J L, Casarin G L, Rodrigues A. Adsorption of CO2 on hydrotalcite-like compounds in a fixed bed. Separation Science and Technology , 2006, 41(2): 341–357 doi: 10.1080/01496390500496827
19
Tagaya H, Tsunaki K, Hasegawa M, Karasu M, Chiba K. Adsorption of CO2 into hydrotalcite like compound. Bul Yam Univ (Eng) , 1992, 22: 21–26
20
Wang X P, Yu J J, Cheng J, Hao Z P, Xu Z P. High-temperature adsorption of carbon dioxide on mixed oxides derived from hydrotalcite-like compounds. Environmental Science & Technology , 2008, 42(2): 614–618 doi: 10.1021/es072085a
21
Othman M R, Rasid N M, Fernando W J N. Mg-Al hydrotalcite coating on zeolites for improved carbon dioxide adsorption. Chemical Engineering Science , 2006, 61(5): 1555–1560 doi: 10.1016/j.ces.2005.09.011