Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2011, Vol. 5 Issue (2): 209-214   https://doi.org/10.1007/s11705-010-1018-3
  RESEARCH ARTICLE 本期目录
Hydrogen production from methanol through dielectric barrier discharge
Hydrogen production from methanol through dielectric barrier discharge
Baowei WANG(), Xu ZHANG, Haiying BAI, Yijun Lü, Shuanghui HU
Key Laboratory for Green Chemical Technology, School of Chemical Engineering Technology, Tianjin University, Tianjin 300072, China
 全文: PDF(152 KB)   HTML
Abstract

The hydrogen fuel cell is a promising option as a future energy resource and the production of hydrogen is mainly depended on fossil fuels now. In this paper, methanol reforming to produce H2 through dielectric-barrier discharge (DBD) plasma reaction was studied. Effects of the power supply parameters, reactor parameters and process conditions on conversion of methanol and distribution of products were investigated. The best reaction conditions were following: input power (45 W), material of inner electrode (stainless steel), discharge gap (3.40 mm), length of reaction zone (90.00 mm), dielectric thickness (1.25 mm), and methanol content (37.65%). The highest conversion of methanol and the yield of H2 were 82.38% and 27.43%, respectively.

Key wordsmethanol    dielectric-barrier discharge    hydrogen    plasma
收稿日期: 2010-08-16      出版日期: 2011-06-05
Corresponding Author(s): WANG Baowei,Email:wangbw@tju.edu.cn   
 引用本文:   
. Hydrogen production from methanol through dielectric barrier discharge[J]. Frontiers of Chemical Science and Engineering, 2011, 5(2): 209-214.
Baowei WANG, Xu ZHANG, Haiying BAI, Yijun Lü, Shuanghui HU. Hydrogen production from methanol through dielectric barrier discharge. Front Chem Sci Eng, 2011, 5(2): 209-214.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-010-1018-3
https://academic.hep.com.cn/fcse/CN/Y2011/V5/I2/209
numberquartz tubediameter of inner electrode /mmlength of discharge zone /mm
outer diameter /mminner diameter /mm
1#159.83/4/5/660/70/80/90
2#14.110.00390
3#13.810.6390
4#12.910.4390
Tab.1  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
thickness of quartz tube /mmconversion /%selectivity of H2 /%selectivity of CO /%yield of H2 /%
1.2582.3832.2951.8126.60
1.6077.7032.0049.7324.86
2.0567.2834.7852.0023.40
2.6074.3331.3549.1223.31
Tab.2  
residence time /sconversion /%selectivity of H2 /%selectivity of CO /%yield of H2 /%
6.1552.0215.6034.008.12
7.3853.1418.3339.959.74
9.2263.6621.9038.8713.94
12.365.8429.5452.5219.45
Tab.3  
methanol content /%conversion /%selectivity of H2 /%selectivity of CO /%yield of H2 /%
37.6575.8036.1856.9627.42
44.6374.3331.3549.1223.30
54.1658.4527.7538.4816.22
60.9145.7127.5235.7212.58
Tab.4  
1 Jiménez M, Yubero C, Calzada M D. Study on the reforming of alcohols in a surface wave discharge (SWD) at atmospheric pressure. Journal of Physics D: Applied Physics , 2008, 41: 175–201
2 Li X S, Zhu A M, Wang K J, Xu Y, Song Z M. Methane conversion to C2 hydrocarbons and hydrogen in atmospheric non-thermal plasmas generated by different electric discharge techniques. Catalysis Today , 2004, 98(4): 617–624
doi: 10.1016/j.cattod.2004.09.048
3 Indarto A. Hydrogen production from methane in a dielectric barrier discharge using oxide zinc and chromium as catalyst. Journal of the Chinese Institute of Chemical Engineers , 2008, 39: 23–28
4 Sá S, Silva H, Sousa J M, Mendes A.Hydrogen production by methanol steam reforming in a membrane reactor: Palladium vs carbon molecular sieve membranes. Journal of Membrane Science , 2009, 339(1-2): 160–170
doi: 10.1016/j.memsci.2009.04.045
5 Zong C Y, Chen L, Wang H L. Hydrogen generation by glow discharge plasma electrolysis of methanol solutions. International Journal of Hydrogen Energy , 2009, 34(1): 48–55
doi: 10.1016/j.ijhydene.2008.09.099
6 Chang F W, Roselin L S, Ou T C. Hydrogen production by partial oxidation of methanol over bimetallic Au-Ru/Fe2O3 catalysts. Applied Catalysis A, General , 2008, 334(1-2): 147–155
doi: 10.1016/j.apcata.2007.10.003
7 Indarto A, Yang D R, Palgunadi J, Choi J W, Lee H, Song H K. Partial oxidation of methane with Cu-Zn-Al catalyst in a dielectric barrier discharge. Chemical Engineering and Processing , 2008, 47(5): 780–786
doi: 10.1016/j.cep.2006.12.015
8 Besancon B M, Hasanov V, Imbault-Lastapis R, Beneschb R, Barrio M, M?lnvikc M J. Hydrogen quality from decarbonized fossil fuels to fuel cells. International Journal of Hydrogen Energy , 2009, 34(5): 2350–2360
doi: 10.1016/j.ijhydene.2008.12.071
9 Das D, Veziro?lu T N. Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy , 2001, 26(1): 13–28
doi: 10.1016/S0360-3199(00)00058-6
10 Take T, Tsurutani K, Umeda M. Hydrogen production by methanol-water solution electrolysis. Journal of Power Sources , 2007, 164(1): 9–16
doi: 10.1016/j.jpowsour.2006.10.011
11 Gondal M A, Hameed A, Yamani Z H. Hydrogen generation by laser transformation of methanol using n-type WO3 semiconductor catalyst. Journal of Molecular Catalysis A: Chemical , 2004, 222(1-2): 259–264
doi: 10.1016/j.molcata.2004.08.022
12 Medinsky M A, Dorman D C. Recent developments in methanol toxicity. Toxicology Letters , 1995, 82-83: 707–711
doi: 10.1016/0378-4274(95)03515-X
13 Li H Q, Zou J J, Zhang Y P, Liu C J. Plasma methanol decomposition using corona discharges. Journal of Industrial and Engineering Chemistry (China) , 2004, 55: 1989–1993 (in Chinese)
14 Deminsky M, Jivotov V, Potapkin B, Rusanov V. Plasma-assisted production of hydrogen from hydrocarbons. Pure and Applied Chemistry , 2002, 74(3): 413–418
doi: 10.1351/pac200274030413
15 Li H Q, Zou J J, Liu C J. Progress in hydrogen generation using plasmas. Progress in Chem , 2005, 17: 69–77
17 Wang B W, Cao X L, Yang K H, Xu G H. Conversion of methane through dielectric-barrier discharge plasma. Frontiers of Chemical Engineering in China , 2008, 2(4): 373–378
doi: 10.1007/s11705-008-0070-8
18 Xu D J, Li Z H, Lv J, Wang B W, Xu G H. Conversion of methane to C2 hydrocarbons through dielectric-barrier discharge plasma at low temperature and atmospheric pressure. Chem Reaction Eng & Tech , 2006, 22: 356–360 (in Chinese)
19 Zhang X, Wang B W, Liu Y W, Xu G H. Conversion of methane by steam reforming using dielectric-barrier discharge. Chinese Journal of Chemical Engineering , 2009, 17(4): 625–629
doi: 10.1016/S1004-9541(08)60254-2
20 Kogelschatz U. Advanced ozone generation. Process Technologies for Water Treatment. Stucki S ed. New York & London: Plenum, 1988, 87–120
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed