Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2011, Vol. 5 Issue (4): 492-499   https://doi.org/10.1007/s11705-011-1143-7
  RESEARCH ARTICLE 本期目录
Effects of operating conditions on membrane charge property and nanofiltration
Effects of operating conditions on membrane charge property and nanofiltration
Li XU1,2(), Li-Shun DU1,2, Jing HE3
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; 2. Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, China; 3. Lanpec Technologies Co., Ltd., Tianjin 300072, China
 全文: PDF(226 KB)   HTML
Abstract

The effects of the operating pressure, cross flow velocity, feed concentration, and temperature on the streaming and Zeta potential of the membranes were studied. The permeate flux and the retention rate under different nanofiltration operating conditions were also investigated. The results show that the higher pressure, feed concentration, temperature, and lower cross flow velocity lead to the higher absolute value of streaming and Zeta potential. The permeate flux of the nanofiltration decreases with the feed concentration and increases with not only the pressure but also the cross flow velocity and temperature. The higher the pressure and the cross flow velocity, the higher the retention rate. The lower feed concentration and higher temperature leads to lower retention rate. The effects of the operating conditions on the permeate flux and the retention rate were explained by the variation of the membrane charge property.

Key wordsnanofiltration membrane    streaming potential    Zeta potential    permeate flux    retention rate
收稿日期: 2011-09-30      出版日期: 2011-12-05
Corresponding Author(s): XU Li,Email:xuli620@163.com   
 引用本文:   
. Effects of operating conditions on membrane charge property and nanofiltration[J]. Frontiers of Chemical Science and Engineering, 2011, 5(4): 492-499.
Li XU, Li-Shun DU, Jing HE. Effects of operating conditions on membrane charge property and nanofiltration. Front Chem Sci Eng, 2011, 5(4): 492-499.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-011-1143-7
https://academic.hep.com.cn/fcse/CN/Y2011/V5/I4/492
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
1 Bowen W R, Mohammad A W, Hilal N. Characterization of nanofiltration membranes for predictive purposes—use of salts, uncharged solutes and atomic force microscopy. Journal of Membrane Science , 1997, 126(1): 91–105
doi: 10.1016/S0376-7388(96)00276-1
2 Bowen W R, Welfoot J S. Predictive modelling of nanofiltration: membrane specification and process optimization. Desalination , 2002, 147(1-3): 197–203
doi: 10.1016/S0011-9164(02)00534-9
3 Labbez C, Fievet P, Szymczyk A, Thomas F, Simon C, Vidonne A, Pagetti J, Foissy A. A comparison of membrane charge of a low nanofiltration ceramic membrane determined from ionic retention and tangential streaming potential measurements. Desalination , 2002, 147(1-3): 223–229
doi: 10.1016/S0011-9164(02)00539-8
4 Navarro R, González M P, Saucedo I, Avila M, Prádanos P, Martínez F, Martín A, Hernández A. Effect of an acidic treatment on the chemical and charge properties of a nanofiltration membrane. Journal of Membrane Science , 2008, 307(1): 136–148
doi: 10.1016/j.memsci.2007.09.015
5 Teixeira M R, Rosa M J, Nystr?m M. The role of membrane charge on nanofiltration performance. Journal of Membrane Science , 2005, 265(1-2): 160–166
doi: 10.1016/j.memsci.2005.04.046
6 Zhao K S, Ni G Z. Dielectric analysis of nanofiltration membrane in electrolyte solutions: Influences of permittivity of wet membrane and volume charge density on ion permeability. Journal of Electroanalytical Chemistry , 2011, 661(1): 226–238
doi: 10.1016/j.jelechem.2011.08.005
7 Ahmad A L, Ooi B S, Mohammad A W, Choudhury J P. Effect of constricted polymerization time on nanofiltration membrane characteristic and performance: a study using the Donnan steric pore flow model. Journal of Applied Polymer Science , 2004, 94(1): 394–399
doi: 10.1002/app.20904
8 Levenstein R, Hasson D, Semiat R. Utilization of the Donnan effect for improving electrolyte separation with nanofiltration membranes. Journal of Membrane Science , 1996, 116(1): 77–92
doi: 10.1016/0376-7388(96)00029-4
9 Lapointe J F, Gauthier S F, Pouliot Y, Bouchard C. Fouling of a nanofiltration membrane by -lactoglobulin tryptic hydrolysate: impact on the membrane sieving and electrostatic properties. Journal of Membrane Science , 2005, 253(1-2): 89–102
doi: 10.1016/j.memsci.2005.01.001
10 Ricq L, Pierre A, Bayle S, Reggiani J C. Electrokinetic characterization of polyethersulfone UF membranes. Desalination , 1997, 109(3): 253–261
doi: 10.1016/S0011-9164(97)00071-4
11 Peeters J M M, Mulder M H V, Strathmann H. Streaming potential measurements as a characterization method for nanofiltration membrane. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 1999, 150(1-3): 247–259
doi: 10.1016/S0927-7757(98)00828-0
12 Szymczyk A, Fievet P, Mullet M, Reggiani J C, Pagetti J. Comparison of two electrokinetic methods—electroosmosis and streaming potential—to determine the Zeta-potential of plane ceramic membranes. Journal of Membrane Science , 1998, 143(1-2): 189–195
doi: 10.1016/S0376-7388(97)00340-2
13 Mo J X, Liu S M. Theory, experimental method and result of the streaming potential. Technology of Water Treatment , 1991, 17(3): 153–161
14 Wang J, Wang X L. Experimental study of the streaming potential of porous polymer MF membranes. Journal of Lianyungang College of Chemical Technology , 2000, 13(3): 4–6 (in Chinese)
15 Liu X H, Wang X Q, Chen H. Synthesis of pyrazosulfuron-ethyl by non-phosgene method. Journal of Lianyungang College of Chemical Technology , 2000, 13(4): 13–15 (in Chinese)
16 Wang J, Ying A L, Wang X L, Yu B. z potentials and pore surface charge densities of the porous polymer membranes (PMP-013MF membrane). Journal of Lianyungang College of Chemical Technology , 2001, 14(1): 1–4 (in Chinese)
17 Wang J, Wang X L, Ying A L, Yu B. Study of the flow character of porous polymer UF membranes. Journal of Lianyungang College of Chemical Technology , 2001, 14(2): 5–7 (in Chinese)
18 Wang J, Wang X L. Determination of the streaming potential of porous polyacrylonitrile UF membranes. Journal of Huaihai Institute of Technology , 2002, 11(1): 38–41 (in Chinese)
19 Xie H, Saito T, Hickner M A. Zeta potential of ion-conductive membranes by streaming current measurements. Langmuir , 2011, 27(8): 4721–4727 (in Chinese)
doi: 10.1021/la105120f pmid:21443169
20 Huisman I H, Prádanos P, Calvo J I, Hernández A. Electroviscous effects, streaming potential, and zeta potential in polycarbonate track-etched membranes. Journal of Membrane Science , 2000, 178(1-2): 79–92
doi: 10.1016/S0376-7388(00)00485-3
21 Pastor R, Calvo J I, Prádanos P, Hernández A. Surface charges and zeta potentials on polyethersulphone heteroporous membranes. Journal of Membrane Science , 1997, 137(1-2): 109–119
doi: 10.1016/S0376-7388(97)00186-5
22 Huisman I H, Prádanos P, Hernández A. Electrokinetic characterisation of ultrafiltration membranes by streaming potential, electroviscous effect, and salt retention. Journal of Membrane Science , 2000, 178(1-2): 55–64
doi: 10.1016/S0376-7388(00)00479-8
23 Kim K J, Fane A G, Nystrom M, Pihlajamaki A, Bowen W R, Mukhtar H. Evaluation of electroosmosis and streaming potential for measurement of electric charges of polymeric membranes. Journal of Membrane Science , 1996, 116(2): 149–159
doi: 10.1016/0376-7388(96)00038-5
24 Martínez F, Martín A, Malfeito J, Palacio L, Prádanos P, Tejerina F, Hernández A. Streaming potential through and on ultrafiltration membranes: influence of salt retention. Journal of Membrane Science , 2002, 206(1-2): 431–441
25 Ye N. Research on the membrane streaming potential testing technique and application. Dissertation for the Master degree . Tianjin: Tianjin University, 2002 (in Chinese)
26 van der Bruggen B, Vandecasteele C. Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry. Environmental Pollution , 2003, 122(3): 435–445
doi: 10.1016/S0269-7491(02)00308-1 pmid:12547533
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed