Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2011, Vol. 5 Issue (3): 297-302   https://doi.org/10.1007/s11705-011-1201-1
  RESEARCH ARTICLE 本期目录
Modeling nanostructured catalyst layer in PEMFC and catalyst utilization
Modeling nanostructured catalyst layer in PEMFC and catalyst utilization
Jiejing ZHANG, Pengzhen CAO, Li XU, Yuxin WANG()
School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, China
 全文: PDF(368 KB)   HTML
Abstract

A lattice model of the nanoscaled catalyst layer structure in proton exchange membrane fuel cells (PEMFC) was established by Monte Carlo method. The model takes into account all the four components in a typical PEMFC catalyst layer: platinum (Pt), carbon, ionomer and pore. The elemental voxels in the lattice were set fine enough so that each average sized Pt particulate in Pt/C catalyst can be represented. Catalyst utilization in the modeled catalyst layer was calculated by counting up the number of facets of Pt voxels where “three phase contact” are met. The effects of some factors, including porosity, ionomer content, Pt/C particle size and Pt weight percentage in the Pt/C catalyst, on catalyst utilization were investigated and discussed.

Key wordscatalyst layer    PEM fuel cell    lattice model    Monte Carlo method    catalyst utilization
收稿日期: 2011-01-20      出版日期: 2011-09-05
Corresponding Author(s): WANG Yuxin,Email:yxwang@tju.edu.cn   
 引用本文:   
. Modeling nanostructured catalyst layer in PEMFC and catalyst utilization[J]. Frontiers of Chemical Science and Engineering, 2011, 5(3): 297-302.
Jiejing ZHANG, Pengzhen CAO, Li XU, Yuxin WANG. Modeling nanostructured catalyst layer in PEMFC and catalyst utilization. Front Chem Sci Eng, 2011, 5(3): 297-302.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-011-1201-1
https://academic.hep.com.cn/fcse/CN/Y2011/V5/I3/297
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Catalyst typeSurface area/Pt mass /(m2·g-1)
10% Pt on carbon black140
20% Pt on carbon black112
30% Pt on carbon black88
40% Pt on carbon black72
60% Pt on carbon black32
80% Pt on carbon black11
Pt black28
Tab.1  
Fig.5  
1 Sun W, Peppley B A, Karan K. An improved two-dimensional agglomerate cathode model to study the influence of catalyst layer structural parameters. Electrochimica Acta , 2005, 50(16-17): 3359–3374
doi: 10.1016/j.electacta.2004.12.009
2 Passalacqua E, Lufrano F, Squadrito G, Patti A, Giorgi L. Nafion content in the catalyst layer of polymer electrolyte fuel cells: effects on structure and performance. Electrochimica Acta , 2001, 46(6): 799–805
doi: 10.1016/S0013-4686(00)00679-4
3 Uchida M, Aoyama Y, Eda N, Ohta A. Investigation of the microstructure in the catalyst layer and effects of both perfluorosulfonate ionomer and PTFE-loaded carbon on the catalyst layer of polymer electrolyte fuel cells. Journal of the Electrochemical Society , 1995, 142(12): 4143–4149
doi: 10.1149/1.2048477
4 Yoon Y G, Park G G, Yang T H, Han J N, Lee W Y, Kim C S. Effect of pore structure of catalyst layer in a PEMFC on its performance. International Journal of Hydrogen Energy , 2003, 28(6): 657–662
doi: 10.1016/S0360-3199(02)00156-8
5 Fischer A, Jindra J, Wendt H. Porosity and catalyst utilization of thin layer cathodes in air operated PEM-fuel cells. Journal of Applied Electrochemistry , 1998, 28(3): 277–282
doi: 10.1023/A:1003259531775
6 Caillard A, Charles C, Ramdutt D, Boswell R, Brault P. Effect of Nafion and platinum content in a catalyst layer processed in a radio frequency helicon plasma system. Journal of Physics. D, Applied Physics , 2009, 42(4): 045207
doi: 10.1088/0022-3727/42/4/045207
7 Chisaka M, Matsuoka E, Daiguji H. Effect of organic solvents on the pore structure of catalyst layers in polymer electrolyte membrane fuel cells. Journal of the Electrochemical Society , 2010, 157(8): B1218–B1221
doi: 10.1149/1.3439617
8 Navessin T, Eikerling M, Wang Q, Song D, Liu Z, Horsfall J, Lovell K V, Holdcroft S. Influence of membrane ion exchange capacity on the catalyst layer performance in an operating PEM fuel cell. Journal of the Electrochemical Society , 2005, 152(4): A796–A805
doi: 10.1149/1.1864432
9 Chaparro A M, Folgado M A, Ferreira-Aparicio P, Martin A J, Alonso-álvarez I, Daza L. Properties of catalyst layers for PEMFC electrodes prepared by electrospray deposition. Journal of the Electrochemical Society , 2010, 157(7): B993–B999
doi: 10.1149/1.3425740
10 Wei Z D, Ran H B, Liu X A, Liu Y, Sun C X, Chan S H, Shen P K. Numerical analysis of Pt utilization in PEMFC catalyst layer using random cluster model. Electrochimica Acta , 2006, 51(15): 3091–3096
doi: 10.1016/j.electacta.2005.08.048
11 Mukherjee P P, Wang C Y. Stochastic microstructure reconstruction and direct numerical simulation of the PEFC catalyst layer. Journal of the Electrochemical Society , 2006, 153(5): A840–A849
doi: 10.1149/1.2179303
12 Wang G, Mukherjee P P, Wang C Y. Direct numerical simulation (DNS) modeling of PEFC electrodes. Part II. Random microstructure. Electrochimica Acta , 2006, 51(15): 3151–3160
doi: 10.1016/j.electacta.2005.09.003
13 Wang H X, Cao P Z, Wang Y X. Monte Carlo simulation of the PEMFC catalyst layer. Frontiers of Chemical Engineering in China , 2007, 1(2): 146–150
doi: 10.1007/s11705-007-0027-3
14 Kim S H, Pitsch H. Reconstruction and effective transport properties of the catalyst layer in PEM fuel cells. Journal of the Electrochemical Society , 2009, 156(6): B673–B681
doi: 10.1149/1.3106136
15 Lange K J, Sui P C, Djilali N. Pore scale simulation of transport and electrochemical reactions in reconstructed PEMFC catalyst layers. Journal of the Electrochemical Society , 2010, 157(10): B1434–B1442
doi: 10.1149/1.3478207
16 Larminie J, Dicks A. Fuel Cell Systems Explained. 2nd ed.United States: Wiley, 2003, 7
17 Cao P Z. Simulations of the PEMFC Catalyst Layer by Monte Carlo Method. Dissertation for the Master’s Degree. Tianjin: Tianjin University, 2007, 38 (in Chinese)
19 Litster S, McLean G. PEM fuel cell electrodes. Journal of Power Sources , 2004, 130(1-2): 61–76
doi: 10.1016/j.jpowsour.2003.12.055
20 Paganin V A, Ticianelli E A, Gonzalez E R. Development and electrochemical studies of gas diffusion electrodes for polymer electrolyte fuel cells. Journal of Applied Electrochemistry , 1996, 26(3): 297–304
doi: 10.1007/BF00242099
21 E-TEK Inc. Gas Diffusion Electrodes and Catalyst Materials. Catalogue, 1995, 19
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed