Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2012, Vol. 6 Issue (3): 311-321   https://doi.org/10.1007/s11705-012-1207-3
  RESEARCH ARTICLE 本期目录
Concentrating aqueous hydrochloric acid by multiple-effect membrane distillation
Concentrating aqueous hydrochloric acid by multiple-effect membrane distillation
Rongling LIU1, Yingjie QIN1(), Xiaojun LI1, Liqiang LIU2
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; 2. Chembrane Engineering & Technology, Inc. Tianjin 300308, China
 全文: PDF(264 KB)   HTML
Abstract

Multiple-effect membrane distillation (MEMD) using a hollow fiber-based air-gap membrane distillation module was experimentally examined for concentrating dilute aqueous hydrochloric acid. The effects of the hot and cold feed-in temperatures, and the feed-in volumetric flow rates on the performance of the MEMD process were studied. The performance was evaluated using the performance ratio (PR), the average selectivity of water over HCl (βavg) and the permeation flux (N). Two types of porous fibers made from polypropylene were used to fabricate the MEMD modules. The experimental data indicated that hollow fibers with high porosity were preferred for the MEMD process. The PR, βavg and N all decreased as the feed concentration increased. When the feed concentration was below 12 wt-%, the PR was 6.0 – 9.6 and βavg was 10 – 190. When the concentration of HCl reached 18 wt-%, the PR and βavg were about 4.4 and 2.3, respectively. However, βavg sharply decreased to around 1.0 when the feed was further concentrated. During an operational stability test that lasted for 30 days, the performance of the MEMD modules remained good.

Key wordsmultiple-effect membrane distillation    performance ratio    hydrochloric acid    recovery    stability
收稿日期: 2012-03-04      出版日期: 2012-09-05
Corresponding Author(s): QIN Yingjie,Email:yjqin@tju.edu.cn   
 引用本文:   
. Concentrating aqueous hydrochloric acid by multiple-effect membrane distillation[J]. Frontiers of Chemical Science and Engineering, 2012, 6(3): 311-321.
Rongling LIU, Yingjie QIN, Xiaojun LI, Liqiang LIU. Concentrating aqueous hydrochloric acid by multiple-effect membrane distillation. Front Chem Sci Eng, 2012, 6(3): 311-321.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-012-1207-3
https://academic.hep.com.cn/fcse/CN/Y2012/V6/I3/311
Fig.1  
Fig.2  
Fig.3  
FibersPorosity /%Mean pore size /μmi.d./o.d.a) /μm
PP0000.38/0.48
PP48300.10.38/0.48
PP60680.20.35/0.60
Tab.1  
CharacteristicsModule 1Module 2
Porous fiber typePP48PP60
Shell materialPPPP
Module inner diameter/mm3535
Effective module length/m0.621.13
Effective evaporation area based on i.d. of the porous fiber/m20.670.63
Number of porous fibers900540
Ratio of the number of porous fibers to dense-wall fibers1∶11∶1.5
Packing density/ %35.732.7
Tab.2  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
1 Guo Z C, Fu Z X. Current situation of energy consumption and measures taken for energy saving in the iron and steel industry in China. Energy , 2010, 35(11): 4356–4360
doi: 10.1016/j.energy.2009.04.008
2 Zhang Y G, Zhao X W, Jin X X. Membrane disposition technology of steel pickling waste acid liquor resource utilization. Industrial Water Treatment , 2006, 26(12): 18–20 (in Chinese)
3 Agrawal A, Sahu K K. An overview of the recovery of acid from spent acidic solutions from steel and electroplating industries. Journal of Hazardous Materials , 2009, 171(1-3): 61–75
doi: 10.1016/j.jhazmat.2009.06.099
4 Miesiac I. Removal of zinc(II) and iron(II) from spent hydrochloric acid by means of anionic resins. Industrial & Engineering Chemistry Research , 2005, 44(4): 1004–1011
doi: 10.1021/ie0493762
5 Regel-Rosocka M. A review on methods of regeneration of steel processing. Journal of Hazardous Materials , 2010, 177(1-3): 57–69
doi: 10.1016/j.jhazmat.2009.12.043
6 Alexandratos S D. Ion-exchange resins: a retrospective from industrial and engineering chemistry research. Industrial & Engineering Chemistry Research , 2009, 48(1): 388–398
doi: 10.1021/ie801242v
7 Mara?ón E, Suárez F, Alonso F, Fernández Y, Sastre H. Preliminary study of iron removal from hydrochloric pickling liquor by ion exchange. Industrial & Engineering Chemistry Research , 1999, 38(7): 2782–2786
doi: 10.1021/ie9806895
8 Xu J, Lu S G, Fu D. Recovery of hydrochloric acid from the waste acid solution by diffusion dialysis. Journal of Hazardous Materials , 2009, 165(1-3): 832–837
doi: 10.1016/j.jhazmat.2008.10.064
9 Luo J Y, Wu C M, Xu T W, Wu Y H. Diffusion dialysis-concept, principle and applications. Journal of Membrane Science , 2011, 366(1-2): 1–16
doi: 10.1016/j.memsci.2010.10.028
10 Kang M S, Yoo K S, Oh S J, Moon S H. A lumped parameter model to predict hydrochloric acid recovery in diffusion dialysis. Journal of Membrane Science , 2001, 188(1): 61–70
doi: 10.1016/S0376-7388(01)00372-6
11 Rohman F S, Othman M R, Aziz N. Modeling of batch electrodialysis for hydrochloric acid recovery. Chemical Engineering Journal , 2010, 162(2): 466–479
doi: 10.1016/j.cej.2010.05.030
12 Rohman F S, Aziz N. Optimization of batch electrodialysis for hydrochloric acid recovery using orthogonal collocation method. Desalination , 2011, 275(1-3): 37–49
doi: 10.1016/j.desal.2011.02.025
13 Wi?niewski J, Wi?niewska G, Winnicki T. Application of bipolar electrodialysis to the recovery of acids and bases from water solutions. Desalination , 2004, 169(1): 11–20
doi: 10.1016/j.desal.2004.08.003
14 Tomaszewska M, Gryta M, Morawski A W. Study on the concentration of acid by membrane distillation. Journal of Membrane Science , 1995, 102(15): 113–122
doi: 10.1016/0376-7388(94)00281-3
15 Tomaszewska M, Gryta M, Morawski A W. The influence of salt in solutions on hydrochloric acid recovery by membrane distillation. Separation and Purification Technology , 1998, 14(1-3): 183–188
doi: 10.1016/S1383-5866(98)00073-2
16 Tomaszewska M, Gryta M, Morawski A W. Recovery of hydrochloric acid from metal pickling solutions by membrane distillation. Separation and Purification Technology , 2001, 22–23 , 591–600
17 Tomaszewska M, Gryta M, Morawski A W. Mass transfer of HCl and H2O across the hydrophobic membrane during membrane distillation. Journal of Membrane Science , 2000, 166(2): 149–157
doi: 10.1016/S0376-7388(99)00263-X
18 Tang J J, Zhou K G. Hydrochloric acid recovery from rare earth chloride solutions by vacuum membrane distillation. Rare Metals , 2006, 25(3): 287–292
doi: 10.1016/S1001-0521(06)60055-7
19 Guillén-Burrieza E, Blanco J, Zaragoza G, Alarcón D C, Palenzuela P, Ibarra M, Gernjak W. Experimental analysis of an air gap membrane distillation solar desalination pilot system. Journal of Membrane Science , 2011, 379(1-2): 386–396
doi: 10.1016/j.memsci.2011.06.009
20 Fiorini P, Sciubba E. Thermoeconomic analysis of a MSF desalination plant. Desalination , 2005, 182(1-3): 39–51
doi: 10.1016/j.desal.2005.03.008
21 Gilron J, Song L M, Sirkar K K. Design for cascade of crossflow direct contact membrane distillation. Industrial & Engineering Chemistry Research , 2007, 46(8): 2324–2334
doi: 10.1021/ie060999k
22 Lee H Y, He F, Song L M, Gilron J, Sirkar K K. Desalination with a cascade of cross-flow hollow fiber membrane distillation devices integrated with a heat exchanger. AIChE Journal. American Institute of Chemical Engineers , 2011, 57(7): 1780–1795
doi: 10.1002/aic.12409
23 Gore W L, Gore R W, Gore D W. US Patent, 4545862, 1985–0810
24 Koschikowski J, Wieghaus M, Rommel M. Solar thermal-driven desalination plants based on membrane distillation. Desalination , 2003, 156(1-3): 295–304
doi: 10.1016/S0011-9164(03)00360-6
25 Guijt C M, Meindersma G W, Reith T, de Haan A B. Air gap membrane distillation 2. Model validation and hollow fibre module performance analysis. Separation and Purification Technology , 2005, 43(3): 245–255
doi: 10.1016/j.seppur.2004.09.016
26 Cheng L H, Wu P C, Chen J H. Numerical simulation and optimal design of AGMD-based hollow fiber modules for desalination. Industrial & Engineering Chemistry Research , 2009, 48(10): 4948–4959
doi: 10.1021/ie800832z
27 Hanemaaijer J H, van Heuven J W. US Patent, 6716355, 2004–0406
28 Alklaibi A, Lior N. Heat and mass transfer resistance analysis of membrane distillation. Journal of Membrane Science , 2006, 282(1-2): 362–369
doi: 10.1016/j.memsci.2006.05.040
29 Banat F A, Simandl J. Membrane distillation for dilute ethanol: Separation from aqueous streams. Journal of Membrane Science , 1999, 163(2): 333–348
doi: 10.1016/S0376-7388(99)00178-7
30 Perry R H, Green D W. Perry’s Chemical Engineers’ Handbook. New York: McGraw-Hill, 1997, 2–76
31 Abu Al-Rub F A, Banat F, Bani-Melhem K. Sensitivity analysis of air gap membrane distillation. Separation and Purification Technology , 2003, 38(15): 3645–3667
32 Wormald C J. Water-hydrogen chloride association. Second virial cross coefficients for water-hydrogen chloride from gas phase excess enthalpy measurements. Journal of Chemical Thermodynamics , 2003, 35(3): 417–431
doi: 10.1016/S0021-9614(02)00362-2
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed