5-(Difluoromethoxy)-2-mercapto-1H-benzimidazole (DMB) was precipitated by adding acetic acid to the DMB sodium salt solution. The spherical agglomeration of DMB during the reactive crystallization in a batch crystallizer was monitored by real-time Particle Video Microscope (PVM). We found that the low feeding rate of acetic acid, high crystallization temperature, low agitation rate or adding seed crystal can facilitate the formation of spherical agglomerates. By using a simple model, the mean crystal agglomerate size of DMB thus predicted is generally in agreement with the experimental data. In addition, the crystallization process of DMB was optimized by a new control strategy of supersaturation to avoid disadvantages brought by agglomeration.
Corresponding Author(s):
WANG Yongli,Email:yliwang@tju.edu.cn
引用本文:
. Control of the agglomeration of crystals in the reactive crystallization of 5-(difluoromethoxy)-2-mercapto-1H-benzimidazole[J]. Frontiers of Chemical Science and Engineering, 2012, 6(4): 423-431.
Yongli WANG, Shuyuan MA, Xiaodong Lü, Chuang XIE. Control of the agglomeration of crystals in the reactive crystallization of 5-(difluoromethoxy)-2-mercapto-1H-benzimidazole. Front Chem Sci Eng, 2012, 6(4): 423-431.
Rajic K K, Novovic D, Marinkovic V, Agbaba D. First-order UV-derivative spectrophotometry in the analysis of omeprazole and pantoprazole sodium salt and corresponding impurities. Journal of Pharmaceutical and Biomedical Analysis , 2003, 32(4–5): 1019–1027 doi: 10.1016/S0731-7085(03)00204-8
2
Collier A P, Hounslow M J. Growth and aggregation rates for calcite and calcium oxalate monohydrate. AIChE Journal , 1999, 45(11): 2298–2305 doi: 10.1002/aic.690451105
3
Ilievski D. Development and application of a constant supersaturation, semi-batch crystalliser for investigating gibbsite agglomeration. Journal of Crystal Growth , 2001, 233(4): 846–862 doi: 10.1016/S0022-0248(01)01640-2
4
Chen P C, Liu S M, Jang C J, Hwang R C, Yang Y L, Lee J S, Jang J S. Interpretation of gas-liquid reactive crystallization data using a size-independent agglomeration model. Journal of Crystal Growth , 2003, 257(3–4): 333–343 doi: 10.1016/S0022-0248(03)01425-8
5
David R, Marchal P, Klein J P, Villermaux J. Crystallization and precipitation engineering. III. A discrete formulation of the agglomeration rate of crystals in a crystallization process. Chemical Engineering Science , 1991, 46(1): 205–213 doi: 10.1016/0009-2509(91)80130-Q
6
Chang S M, Kim J M, Kim I H, Shin D M, Kim W S. Agglomeration control of L-ornithine asparate crystals in drowning-out crystallization. Industrial & Engineering Chemistry Research , 2006, 45(5): 1631–1635 doi: 10.1021/ie050831j
7
Zauner R, Jones A G. Mixing effects on product particle characteristics from semi-batch crystal precipitation.Chemical Engineering Research and Design , 2000, 78(6): 894–902 doi: 10.1205/026387600527969
8
Yu Z Q, Tan R B H, Chow P S. Effects of operating conditions on agglomeration and habit of paracetamol crystals in anti-solvent crystallization. Journal of Crystal Growth , 2005, 279(3–4): 477–488 doi: 10.1016/j.jcrysgro.2005.02.050
9
Seyssiecq I, Veesler S, Boistelle R, Lamerant J M. Agglomeration of Gibbsite Al(OH)3 crystals in Bayer liquors. Influence of the process parameters. Chemical Engineering Science , 1998, 53(12): 2177–2185 doi: 10.1016/S0009-2509(98)00032-3
10
Alander E M, Rasmuson A C. Mechanisms of crystal agglomeration of paracetamole in acetone-water mixtures. Industrial & Engineering Chemistry Research , 2005, 44(15): 5788–5794 doi: 10.1021/ie0489204
11
Synowiec P, Jones A G, Ayazi Shamlou P. ShamLou P A. Crystal break-up in dilute turbulently agitated suspensions. Chemical Engineering Science , 1993, 48(20): 3485–3495 doi: 10.1016/0009-2509(93)85004-9
12
Sung M H, Choi I S, Kim J S, Kim W S. Agglomeration of yttrium oxalate particles produced by reaction precipitation in semi-batch reactor. Chemical Engineering Science , 2000, 55(12): 2173–2184 doi: 10.1016/S0009-2509(99)00480-7
13
Ayazi ShamLou P. Titchener-Hooker N. Turbulent aggregation and breakup of particles in liquid in stirred vessel. Oxford: Butterworth-Heinemann Ltd , 1993, 1–25
14
Zauner R, Jones A G. Determination of nucleation, growth, agglomeration and disruption kinetics from experimental precipitation data: the calcium oxalate system. Chemical Engineering Science , 2000, 55(19): 4219–4232 doi: 10.1016/S0009-2509(00)00059-2
15
Chin C J, Yiacoumi S, Tsouris C. Shear-induced flocculation of colloidal particles in stirred tanks. Journal of Colloid and Interface Science , 1998, 206(2): 532–545 doi: 10.1006/jcis.1998.5737