Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2012, Vol. 6 Issue (4): 423-431   https://doi.org/10.1007/s11705-012-1211-7
  RESEARCH ARTICLE 本期目录
Control of the agglomeration of crystals in the reactive crystallization of 5-(difluoromethoxy)-2-mercapto-1H-benzimidazole
Control of the agglomeration of crystals in the reactive crystallization of 5-(difluoromethoxy)-2-mercapto-1H-benzimidazole
Yongli WANG(), Shuyuan MA, Xiaodong Lü, Chuang XIE
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
 全文: PDF(442 KB)   HTML
Abstract

5-(Difluoromethoxy)-2-mercapto-1H-benzimidazole (DMB) was precipitated by adding acetic acid to the DMB sodium salt solution. The spherical agglomeration of DMB during the reactive crystallization in a batch crystallizer was monitored by real-time Particle Video Microscope (PVM). We found that the low feeding rate of acetic acid, high crystallization temperature, low agitation rate or adding seed crystal can facilitate the formation of spherical agglomerates. By using a simple model, the mean crystal agglomerate size of DMB thus predicted is generally in agreement with the experimental data. In addition, the crystallization process of DMB was optimized by a new control strategy of supersaturation to avoid disadvantages brought by agglomeration.

Key words5-(difluoromethoxy)-2-mercapto-1H-benzimidazole (DMB)    reactive crystallization    agglomeration    feeding rate    crystallization temperature    agitation rate
收稿日期: 2012-02-20      出版日期: 2012-12-05
Corresponding Author(s): WANG Yongli,Email:yliwang@tju.edu.cn   
 引用本文:   
. Control of the agglomeration of crystals in the reactive crystallization of 5-(difluoromethoxy)-2-mercapto-1H-benzimidazole[J]. Frontiers of Chemical Science and Engineering, 2012, 6(4): 423-431.
Yongli WANG, Shuyuan MA, Xiaodong Lü, Chuang XIE. Control of the agglomeration of crystals in the reactive crystallization of 5-(difluoromethoxy)-2-mercapto-1H-benzimidazole. Front Chem Sci Eng, 2012, 6(4): 423-431.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-012-1211-7
https://academic.hep.com.cn/fcse/CN/Y2012/V6/I4/423
1 Rajic K K, Novovic D, Marinkovic V, Agbaba D. First-order UV-derivative spectrophotometry in the analysis of omeprazole and pantoprazole sodium salt and corresponding impurities. Journal of Pharmaceutical and Biomedical Analysis , 2003, 32(4–5): 1019–1027
doi: 10.1016/S0731-7085(03)00204-8
2 Collier A P, Hounslow M J. Growth and aggregation rates for calcite and calcium oxalate monohydrate. AIChE Journal , 1999, 45(11): 2298–2305
doi: 10.1002/aic.690451105
3 Ilievski D. Development and application of a constant supersaturation, semi-batch crystalliser for investigating gibbsite agglomeration. Journal of Crystal Growth , 2001, 233(4): 846–862
doi: 10.1016/S0022-0248(01)01640-2
4 Chen P C, Liu S M, Jang C J, Hwang R C, Yang Y L, Lee J S, Jang J S. Interpretation of gas-liquid reactive crystallization data using a size-independent agglomeration model. Journal of Crystal Growth , 2003, 257(3–4): 333–343
doi: 10.1016/S0022-0248(03)01425-8
5 David R, Marchal P, Klein J P, Villermaux J. Crystallization and precipitation engineering. III. A discrete formulation of the agglomeration rate of crystals in a crystallization process. Chemical Engineering Science , 1991, 46(1): 205–213
doi: 10.1016/0009-2509(91)80130-Q
6 Chang S M, Kim J M, Kim I H, Shin D M, Kim W S. Agglomeration control of L-ornithine asparate crystals in drowning-out crystallization. Industrial & Engineering Chemistry Research , 2006, 45(5): 1631–1635
doi: 10.1021/ie050831j
7 Zauner R, Jones A G. Mixing effects on product particle characteristics from semi-batch crystal precipitation.Chemical Engineering Research and Design , 2000, 78(6): 894–902
doi: 10.1205/026387600527969
8 Yu Z Q, Tan R B H, Chow P S. Effects of operating conditions on agglomeration and habit of paracetamol crystals in anti-solvent crystallization. Journal of Crystal Growth , 2005, 279(3–4): 477–488
doi: 10.1016/j.jcrysgro.2005.02.050
9 Seyssiecq I, Veesler S, Boistelle R, Lamerant J M. Agglomeration of Gibbsite Al(OH)3 crystals in Bayer liquors. Influence of the process parameters. Chemical Engineering Science , 1998, 53(12): 2177–2185
doi: 10.1016/S0009-2509(98)00032-3
10 Alander E M, Rasmuson A C. Mechanisms of crystal agglomeration of paracetamole in acetone-water mixtures. Industrial & Engineering Chemistry Research , 2005, 44(15): 5788–5794
doi: 10.1021/ie0489204
11 Synowiec P, Jones A G, Ayazi Shamlou P. ShamLou P A. Crystal break-up in dilute turbulently agitated suspensions. Chemical Engineering Science , 1993, 48(20): 3485–3495
doi: 10.1016/0009-2509(93)85004-9
12 Sung M H, Choi I S, Kim J S, Kim W S. Agglomeration of yttrium oxalate particles produced by reaction precipitation in semi-batch reactor. Chemical Engineering Science , 2000, 55(12): 2173–2184
doi: 10.1016/S0009-2509(99)00480-7
13 Ayazi ShamLou P. Titchener-Hooker N. Turbulent aggregation and breakup of particles in liquid in stirred vessel. Oxford: Butterworth-Heinemann Ltd , 1993, 1–25
14 Zauner R, Jones A G. Determination of nucleation, growth, agglomeration and disruption kinetics from experimental precipitation data: the calcium oxalate system. Chemical Engineering Science , 2000, 55(19): 4219–4232
doi: 10.1016/S0009-2509(00)00059-2
15 Chin C J, Yiacoumi S, Tsouris C. Shear-induced flocculation of colloidal particles in stirred tanks. Journal of Colloid and Interface Science , 1998, 206(2): 532–545
doi: 10.1006/jcis.1998.5737
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed