Tungsten (VI) oxide (WO3) nanomaterials were synthesized by a sol-gel method using WCl6 and C2H5OH as precursors followed by calcination or hydrothermal treatment. X-Ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) equipped with energy dispersive X-ray spectroscopy (EDX) were used to characterize the structure and morphology of the materials. There were significant differences between the WO3 materials that were calcinated and those that were subjected to a hydrothermal process. The XRD results revealed that calcination temperatures of 300°C and 400°C gave hexagonal structures and temperatures of 500°C and 600°C gave monoclinic structures. The SEM images showed that an increase in calcination temperature led to a decrease in the WO3 powder particle size. The TEM analysis showed that several nanoparticles agglomerated to form bigger clusters. The hydrothermal process produced hexagonal structures for holding times of 12, 16, and 20 h and monoclinic structures for a holding time of 24 h. The SEM results showed transparent rectangular particles which according to the TEM results originated from the aggregation of several nanotubes.
. Comparison of the morphology and structure of WO3 nanomaterials synthesized by a sol-gel method followed by calcination or hydrothermal treatment[J]. Frontiers of Chemical Science and Engineering, 2012, 6(4): 371-380.
Diah Susanti, Stefanus Haryo N, Hasnan Nisfu, Eko Prasetio Nugroho, Hariyati Purwaningsih, George Endri Kusuma, Shao-Ju Shih. Comparison of the morphology and structure of WO3 nanomaterials synthesized by a sol-gel method followed by calcination or hydrothermal treatment. Front Chem Sci Eng, 2012, 6(4): 371-380.
Gillet M, Masek K, Gillet E.Structure of tungsten oxide nanoclusters. Surface Science , 2004, 566-568: 383–389
3
Boulova M, Gaskov A, Lucazeau G. Tungsten oxide reactivity versus CH4, CO and NO2 molecules studied by Raman spectroscopy. Sensors and Actuators B, Chemical , 2001, 81(1): 99–106 doi: 10.1016/S0925-4005(01)00938-8
4
Kanan S M, Tripp C P. Synthesis, FTIR studies and sensor properties of WO3 powders. Current Opinion in Solid State and Materials Science , 2007, 11(1-2): 19–27 doi: 10.1016/j.cossms.2007.11.001
5
Liu Z, Miyauchi M, Yamazaki T, Shen Y. Facile synthesis and NO2 gas sensing of tungsten oxide nanorods assembled microspheres. Sensors and Actuators B, Chemical , 2009, 140(2): 514–519 doi: 10.1016/j.snb.2009.04.059
6
Wang S H, Chou T C, Liu C C. Nano-crystalline tungsten oxide NO2 sensor. Sensors and Actuators. B, Chemical , 2003, 94(3): 343–351 doi: 10.1016/S0925-4005(03)00383-6
7
Yan A, Xie C, Zeng D, Cai S, Hu M. Synthesis, formation mechanism and sensing properties of WO3 hydrate nanowire netted-spheres. Materials Research Bulletin , 2010, 45(10): 1541–1547 doi: 10.1016/j.materresbull.2010.05.026
8
Su X, Li Y, Jian J, Wang J. In situ etching WO3 nanoplates: hydrothermal synthesis, photoluminescence and gas sensor properties. Materials Research Bulletin , 2010, 45(12): 1960–1963 doi: 10.1016/j.materresbull.2010.08.011
9
Deepa M, Singh P, Sharma S N, Agnihotry S A. Effect of humidity on structure and electrochromic properties of sol-gel-derived tungsten oxide films. Solar Energy Materials and Solar Cells , 2006, 90(16): 2665–2682 doi: 10.1016/j.solmat.2006.02.032
10
Chang K H, Hu C C, Huang C M, Liu Y L, Chang C I. Microwave-assisted hydrothermal synthesis of crystalline WO3-WO3·0.5H2O mixtures for pseudocapacitors of the asymmetric type. Journal of Power Sources , 2011, 196(4): 2387–2392 doi: 10.1016/j.jpowsour.2010.09.078
11
Sun Y, Murphy C J, Reyes-Gil K R, Reyes-Garcia E A, Thornton J M, Morris N A, Raftery D. Photochemical and structural characterization of carbon-doped WO3 films prepared via spray pyrolysis. International Journal of Hydrogen Energy , 2009, 34(20): 8476–8484 doi: 10.1016/j.ijhydene.2009.08.015
12
Ozkan E, Lee S H, Liu P, Tracy C E, Tepehan F Z, Pitts J R, Deb S K. Electrochromic and optical properties of mesoporous tungsten oxide films. Solid State Ionics , 2002, 149(1-2): 139–146 doi: 10.1016/S0167-2738(02)00143-1
13
Su L, Lu Z. All solid-state smart window of electrodeposited WO3 and TiO2 particulate film with PTREFG gel electrolyte. Journal of Physics and Chemistry of Solids , 1998, 59(8): 1175–1180 doi: 10.1016/S0022-3697(98)00072-9
14
Ha J H, Muralidharan P, Kim D K. Hydrothermal synthesis and characterization of self-assembled h-WO3 nanowires/nanorods using EDTA salts. Journal of Alloys and Compounds , 2009, 475(1-2): 446–451 doi: 10.1016/j.jallcom.2008.07.048
15
Pyper O, Schollhorn R, Donkers J J T M, Krings L H M. Nanocrystalline structure of WO3 thin films prepared by the sol-gel technique. Materials Research Bulletin , 1998, 33(7): 1095–1101 doi: 10.1016/S0025-5408(98)00080-4
16
Yous B, Robin S, Donnadieu A. Chemical vapor deposition of tungsten oxides: a comparative study by XPS, XRD and RHEED. Materials Research Bulletin , 1984, 19(10): 1349–1354 doi: 10.1016/0025-5408(84)90199-5
17
Pyun S I, Kim D J, Bae J S. Hydrogen transport through r.f. magnetron sputtered amorphous and crystalline WO3 films. Journal of Alloys and Compounds , 1996, 244(1-2): 16–22 doi: 10.1016/S0925-8388(96)02416-4
18
Abdullah S F, Radiman S, Hamid M A A, Ibrahim N B. Effect of calcinations temperature on the surface morphology and crystallinity of tungsten (VI) oxide nanorods prepared using colloidal gas aphrons method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 280: 88–94 doi: 10.1016/j.colsurfa.2006.01.042
19
Hidayat D, Purwanto A, Wang W N, Okuyama K. Preparation of size-controlled tungsten oxide nanoparticles and evaluation of their adsorption performance. Materials Research Bulletin , 2010, 45(2): 165–173 doi: 10.1016/j.materresbull.2009.09.025
20
Deki S, Beleke A B, Kotani Y, Mizuhata M. Synthesis of tungsten oxide thin film by liquid phase deposition. Materials Chemistry and Physics , 2010, 123(2-3): 614–619 doi: 10.1016/j.matchemphys.2010.05.024
21
Houx N L, Pourroy G, Camerel F, Comet M, Spitzer D. WO3 nanoparticles in the 5-30 nm range by solvothermal synthesis under microwave or resistive heating. Journal of Physical Chemistry B , 2010, 114(1): 155–161
22
Brinker C J, Scherer G W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. London: Academic Press Inc, 1990, 2: 47–49
23
Chai F, Tan R, Cao F, Zhai F, Wang X, Shao C, Liu Y. Dendritic and tubular tungsten oxide by surface sol-gel mineralisation of cellulosic substance. Materials Letters , 2007, 61(18): 3939–3941 doi: 10.1016/j.matlet.2006.12.087
24
Huirache-Acu?a R, Paraguay-Delgado F, Albiter M A, Lara-Romero J, Martínez-Sánchez R. Synthesis and characterization of WO3 nanostructures prepared by an aged-hydrothermal method. Materials Characterization , 2009, 60(9): 932–937 doi: 10.1016/j.matchar.2009.03.006
25
JCPDS Card No. 85–2459
26
JCPDS Card No. 83–0950
27
Cullity B D, Stock S R. Elements of X-ray Diffraction. 3rd ed. London: Prentice Hall, 2001, 170
28
Ramana C V, Utsunomiya S, Ewing R C, Julien C M, Becker U. Structural stability and phase transitions in WO3 thin films. Journal of Physical Chemistry B , 2006, 110(21): 10430–10435 doi: 10.1021/jp056664i
29
Chatten R, Chadwick A V, Rougier A, Lindan P J D. The oxygen vacancy in crystal phases of WO3. Journal of Physical Chemistry B , 2005, 109(8): 3146–3156 doi: 10.1021/jp045655r
30
Szilágyi I M, Madarász J, Pokol G, Király P. Tárkányi, Saukko S, Mizsei J, Tòth A L, Szabò A, Varga-Josepovits K. Stability and controlled composition of hexagonal WO3. Chemistry of Materials , 2008, 20(12): 4116–4125