Heat (energy), water (mass), and work (pressure) are the most fundamental utilities for operation units in chemical plants. To reduce energy consumption and diminish environment hazards, various integration methods have been developed. The application of heat exchange networks (HENs), mass exchange networks (MENs), water allocation heat exchange networks (WAHENs) and work exchange networks (WENs) have resulted in the significant saving of energy and water. This review presents the main works related to each network. The similarities and differences of these networks are also discussed. Through comparing and discussing these different networks, this review inspires researchers to propose more efficient and convenient methods for the design of existing exchange networks and even new types of networks including multi-objective networks for the system integration in order to enhance the optimization and controllability of processes.
Corresponding Author(s):
WANG Jingtao,Email:wjingtao928@tju.edu.cn
引用本文:
. Heat, mass, and work exchange networks[J]. Frontiers of Chemical Science and Engineering, 2012, 6(4): 484-502.
Zhiyou CHEN, Jingtao WANG. Heat, mass, and work exchange networks. Front Chem Sci Eng, 2012, 6(4): 484-502.
Yao P J. Chemical Process Engineering. Dalian: Dalian University of Technology Press, 1992 (in Chinese)
2
Linnhoff B, Flower J R. Synthesis of heat exchange networks. II. Evolutionary generation of networks with various criteria of optimality. AIChE Journal. American Institute of Chemical Engineers , 1978, 24(4): 642–654 doi: 10.1002/aic.690240412
3
Townsend D W, Linnhoff B. Heat and power networks in process design. Part II: design procedure for equipment selection and process matching. AIChE Journal. American Institute of Chemical Engineers , 1983, 29(5): 748–771 doi: 10.1002/aic.690290509
4
Linnhoff B, Flower J R. Synthesis of heat exchanger networks: I. Systematic generation of energy optimal networks. AIChE Journal. American Institute of Chemical Engineers , 1978, 24(4): 633–642 doi: 10.1002/aic.690240411
5
Bagajewicz M J, Barbaro A F. On the use of heat pumps in total site heat integration. Computers & Chemical Engineering , 2003, 27(11): 1707–1719 doi: 10.1016/S0098-1354(03)00149-2
6
Papoulias S A, Grossmann I E. A structural optimization approach in process synthesis. II. Heat recovery networks. Computers & Chemical Engineering , 1983, 7(6): 707–721 doi: 10.1016/0098-1354(83)85023-6
7
Yee T F, Grossmann I E. Simultaneous optimization models for heat integration. II. Heat exchanger network synthesis. Computers & Chemical Engineering , 1990, 14(10): 1165–1184 doi: 10.1016/0098-1354(90)85010-8
8
Yee T F, Grossmann I E, Kravanja Z. Simultaneous optimization models for heat integration. I. Area and energy targeting and modeling of multi-stream exchangers. Computers & Chemical Engineering , 1990, 14(10): 1151–1164 doi: 10.1016/0098-1354(90)85009-Y
9
Furman K C, Sahinidis N V. A critical review and annotated bibliography for heat exchanger network synthesis in the 20th century. Industrial & Engineering Chemistry Research , 2002, 41(10): 2335–2370 doi: 10.1021/ie010389e
10
Morar M, Agachi P S. Review: important contributions in development and improvement of the heat integration techniques. Computers & Chemical Engineering , 2010, 34(8): 1171–1179 doi: 10.1016/j.compchemeng.2010.02.038
11
Kotjabasakis E, Linnhoff B. Sensitivity tables for the design of flexible processes. 1. How much contingency in heat exchanger network is cost-effective. Chemical Engineering Research & Design , 1986, 64: 197–211
12
Chen C L, Hung P S. Synthesis of flexible heat exchange networks and mass exchange networks. Computers & Chemical Engineering , 2007, 31(12): 1619–1632 doi: 10.1016/j.compchemeng.2007.01.013
13
Baldea M, Daoutidis P. Modeling, dynamics and control of process networks with high energy throughput. Computers & Chemical Engineering , 2008, 32(9): 1964–1983 doi: 10.1016/j.compchemeng.2008.02.012
14
Feng X, Du J, Liu L L, Luan G Y, Yao P J. Simultaneous optimization of synthesis and scheduling of cleaning in flexible heat exchanger networks. Chinese Journal of Chemical Engineering , 2010, 18(3): 402–411 doi: 10.1016/S1004-9541(10)60238-8
15
Dhole V R, Linnhoff B. Total site targets for fuel, co-generation, emissions, and cooling. Computers & Chemical Engineering , 1992, 17: S101
16
Rodera H, Bagajewicz M J. Targeting procedures for energy savings by heat integration across plants. AIChE Journal. American Institute of Chemical Engineers , 1999, 45(8): 1721–1549 doi: 10.1002/aic.690450810
17
Hui C W, Ahmad S. Minimum cost heat recovery between separate plant regions. Computers & Chemical Engineering , 1994, 18(8): 711–728 doi: 10.1016/0098-1354(93)E0020-A
18
Makwana Y, Smith R, Zhu X X. A novel approach for retrofit and operations management of existing total sites. Computers & Chemical Engineering , 1998, 22: S793–Sl96 doi: 10.1016/S0098-1354(98)00150-1
19
Wolff A, Groebel M J, Janowsky R. Site modeling TM: a powerful tool for total site energy optimization. Computers & Chemical Engineering , 1998, 22: S1073–S1084 doi: 10.1016/S0098-1354(98)00213-0
20
Shenoy U V, Sinha A, Bandyopadhyay S. Multiple utilities targeting for heat exchanger networks. Trans IChemE , 1998, 76, Part A
21
Marechal F, Kalitventzeff B. Targeting the integration of multi-period utility systems for site scale process integration. Applied Thermal Engineering , 2003, 23(14): 1763–1784 doi: 10.1016/S1359-4311(03)00142-X
22
Matsuda K, Hirochi Y, Tatsumi H, Shire T. Applying heat integration total site based pinch technology to a large industrial area in Japan to further improve performance of highly efficient process plants. Energy , 2009, 34(10): 687–692 doi: 10.1016/j.energy.2009.05.017
23
Gor?ek A, Glavi? P, Bogataj M. Design of the optimal total site heat recovery system using SSSP approach. Chemical Engineering Progress , 2006, 45(5): 372–382 doi: 10.1016/j.cep.2005.10.003
24
Bandyopadhyay S, Varghese J, Bansal V. Targeting for cogeneration potential through total site integration. Applied Thermal Engineering , 2010, 30(1): 6–14 doi: 10.1016/j.applthermaleng.2009.03.007
25
Liewa P Y, Rafidah S, Alwia W, Varbanovb P S, Manana Z A, Kleme? J J. A numerical technique for total site sensitivity analysis. Applied Thermal Engineering , 2012, 40: 397–408 doi: 10.1016/j.applthermaleng.2012.02.026
26
Matsuda K, Tanaka S, Endou M, Iiyoshi T. Energy saving study on a large steel plant by total site based pinch technology. Applied Thermal Engineering , 2012, 43: 14–19 doi: 10.1016/j.applthermaleng.2011.11.043
27
Varbanov P S, Fodor Z, Klemes J J. Total site targeting with process specific minimum temperature difference (ΔTmin). Energy , 2012, 44(1): 20–28 doi: 10.1016/j.energy.2011.12.025
28
Varghese J, Bandyopadhyay S. Fired heater integration into total site and multiple fired heater targeting. Applied Thermal Engineering , 2012, 42: 111–118 doi: 10.1016/j.applthermaleng.2012.02.017
29
Rodera H, Bagajewicz M J. Multipurpose heat-exchanger networks for heat integration across plants. Industrial & Engineering Chemistry Research , 2001, 40(23): 55–85 doi: 10.1021/ie010343l
30
Goldblatt M E, Eble K S, Feather J E. Zero discharge: what, why, and how. Chemical Engineering Progress , 1993, 89(4): 22–27
31
Rosain R M. Reusing water in CPI plants. Chemical Engineering Progress , 1993, 89(4): 28–35
32
Zbontar L, Glavic P. Total site: wastewater minimization wastewater reuse and regeneration reuse. Resour Consrev Recy , 2000, 30(4): 261–275 doi: 10.1016/S0921-3449(00)00064-1
33
El-Halwagi M M, Manousiouthakis V. Synthesis of mass exchange networks. AIChE Journal. American Institute of Chemical Engineers , 1989, 35(8): 1233–1244 doi: 10.1002/aic.690350802
34
Wang Y P, Smith R. Wastewater minimization. Chemical Engineering Science , 1994, 49(7): 981–1006 doi: 10.1016/0009-2509(94)80006-5
35
Feng X, Bai J, Zheng X S. On the use of graphical method to determine the targets of single-contaminant regeneration recyclingwater systems. Chemical Engineering Science , 2007, 62(8): 2127–2138 doi: 10.1016/j.ces.2006.12.081
36
Vikas R D, Nand R, Richard A T, Marek W. Make your process water pay for itself. Chem Eng , 1996, January: 100–103
37
Foo D C Y. State-of-the-art review of pinch analysis techniques for water network synthesis. Industrial & Engineering Chemistry Research , 2009, 48(11): 5125–5159 doi: 10.1021/ie801264c
38
Doyle S J, Smith R. Targeting water reuse with multiple contaminants. Trans IChemE , 1997, 75, Part B: 181–189
39
Sorin M, Bedard S. The global pinch point in water reuse networks. Trans IChemE , 1999, 77, Part B: 305–308
40
Castro P, Matos H, Fernandes M C, Nunes P C. Improvements for mass-exchange networks design. Chemical Engineering Science , 1999, 54(11): 1649–1665 doi: 10.1016/S0009-2509(98)00526-0
41
Hallale N. A new graphical targeting method for water minimization. Advances in Environmental Research , 2002, 6(3): 377–390 doi: 10.1016/S1093-0191(01)00116-2
42
Manan Z A, Tan Y L, Foo D C Y. Targeting the minimum water flow rate using water cascade analysis technique. AIChE Journal. American Institute of Chemical Engineers , 2004, 50(12): 3169–3183 doi: 10.1002/aic.10235
43
Bandyopadhyay S. Source composite curve for waste reduction. Chemical Engineering Journal , 2006, 125(2): 99–110 doi: 10.1016/j.cej.2006.08.007
44
Hallale N, Fraser D M. Capital cost targets for mass exchange networks a special case: water minimization. Chemical Engineering Science , 1998, 53(2): 293–313 doi: 10.1016/S0009-2509(97)00191-7
45
Quesada I, Grossmann I E. Global optimization algorithm of process networks with multi-component flows. Computers & Chemical Engineering , 1995, 19(12): 1219-1242 doi: 10.1016/0098-1354(94)00123-5
46
Galan B, Grossmann I E. Optimal design of distributed wastewater treatment networks. Industrial & Engineering Chemistry Research , 1998, 37(10): 4036–4048 doi: 10.1021/ie980133h
48
Saif Y, Elkamel A, Pritzker M.Yousef, TriPathi P, Elkamel A, Pritzker M. Global optimization of reverse osmosis network for wastewater treatment and minimization. Industrial & Engineering Chemistry Research , 2008, 47(9): 3060–3070 doi: 10.1021/ie071316j
49
Li Y, Du J, Yao P J. Design of water network with multiple contaminants and zero discharge. Chinese Journal of Chemical Engineering , 2003, 11(5): 559–564
50
Gunaratnam M, Alva-Argáez A, Kokossis A, Kim J K, Smith R.Alva-Argáez A, Kokossis A, Kim J K, Smith R. Automated design of total water systems. Industrial & Engineering Chemistry Research , 2005, 44(3): 588–599 doi: 10.1021/ie040092r
51
Zheng P, Feng X, Qian F, Cao D. Water system integration of a chemical plant. Energy Conversion and Management , 2006, 47(15-16): 2470–2478 doi: 10.1016/j.enconman.2005.11.001
52
Tan Y L, Manan Z A. Retrofit of water network with optimization of existing regeneration units. Industrial & Engineering Chemistry Research , 2006, 45(22): 7592–7602 doi: 10.1021/ie060629w
53
Feng X, Bai J, Wang H M, Zheng X S. Grass-roots design of regeneration recycling water networks. Computers & Chemical Engineering , 2008, 32(8): 1892–1907 doi: 10.1016/j.compchemeng.2007.10.006
54
Boix M, Montastruc L, Pibouleau L, Azzaro-Pantel C, Domenech S. A multiobjective optimization framework for multicontaminant industrial water network design. Journal of Environmental Management , 2011, 92(7): 1802–1808 doi: 10.1016/j.jenvman.2011.02.016 pmid:21435775
55
Tudor R, Lavric V. Dual-objective optimization of integrated water/wastewater networks. Computers & Chemical Engineering , 2011, 35(12): 2853–2866 doi: 10.1016/j.compchemeng.2011.04.010
56
Fan X Y, Li Y P, Liu Z Y, Pan C H. A new design method for water-using networks of multiple contaminants with the concentration potential concepts. Chemical Engineering Science , 2012, 73: 345–353 doi: 10.1016/j.ces.2012.02.003
57
Alva-Argbez A, Kokossis C, Smith R. Wastewater minimization of industrial systems using an integrated approach. Computers & Chemical Engineering , 1998, 22: 741–744 doi: 10.1016/S0098-1354(98)00138-0
58
Cao K, Feng X, Ma H. Pinch multi-agent genetic algorithm for optimizing water-using networks. Computers & Chemical Engineering , 2007, 31(12): 1565–1575 doi: 10.1016/j.compchemeng.2007.01.004
59
Karuppiah R, Grossmann I E. Global optimization of multiscenario mixed integer nonlinear programming models arising in the synthesis of integrated water networks under uncertainty. Computers & Chemical Engineering , 2008, 32(1-2): 145–160 doi: 10.1016/j.compchemeng.2007.03.007
60
Feng X, Shen R J, Zheng X S, Lu C X. Water allocation network design concerning process disturbance. Industrial & Engineering Chemistry Research , 2011, 50(7): 3675–3685 doi: 10.1021/ie100847s
61
Tan R R, Foo D C Y, Manan Z A. Assessing the sensitivity of water networks to noisy mass loads using Monte Carlo simulation. Computers & Chemical Engineering , 2007, 31(10): 1355–1363 doi: 10.1016/j.compchemeng.2006.11.005
62
Fu J, Cai T X, Xu Q. Coupling multiple water-reuse network designs for agile manufacturing. Computers & Chemical Engineering , 2012, 45(12): 62–71 doi: 10.1016/j.compchemeng.2012.06.002
63
Zhou R J, Li L J, Xiao W, Dong H G. Simultaneous optimization of batch process schedules and water-allocation network. Computers & Chemical Engineering , 2009, 33(6): 1153–1168 doi: 10.1016/j.compchemeng.2008.11.008
64
Li L J, Zhou R J, Dong H G. State-time-space superstructure-based MINLP formulation for batch water-allocation network design. Industrial & Engineering Chemistry Research , 2010, 49(1): 236–251 doi: 10.1021/ie900427b
65
Srinivas B K, El-Halwagi M M. Synthesis of combined heat reactive mass-exchange networks. Chemical Engineering Science , 1994, 13(13): 2059–2074 doi: 10.1016/0009-2509(94)E0016-J
66
Luo Y Q, Mao T B, Luo S C, Yuan X G. Studies on the effect of non-isothermal mixing on water-using network’s energy performance. Computers & Chemical Engineering , 2012, 36: 140–148 doi: 10.1016/j.compchemeng.2011.07.007
67
Savulescu L, Kim J K, Smith R. Studies on simultaneous energy and water minimisation—Part I: Systems with no water re-use. Chemical Engineering Science , 2005, 60(12): 3279–3290 doi: 10.1016/j.ces.2004.12.037
68
Papalexandri K P, Pistikopoulous E N. A process synthesis modelling framework based on mass/heat transfer module hyperstructure. Computers & Chemical Engineering , 1995, 19: 71–76 doi: 10.1016/0098-1354(95)87017-2
69
Bagajewicz M J, Pham R, Manousiouthakis V. On the state space approach to mass/heat exchanger network design. Chemical Engineering Science , 1998, 53(14): 2595–2621 doi: 10.1016/S0009-2509(98)00014-1
70
Savulescu L E, Sorin M, Smith R. Direct and indirect heat transfer in water network systems. Applied Thermal Engineering , 2002, 22(8): 981–988 doi: 10.1016/S1359-4311(02)00015-7
71
Savulescu L. Simultaneous energy and water minimization. Dissertation for the Doctoral Degree . Manchester: the University of Manchester Institute of Science and Technology, 1999
72
Feng X, Li Y, Yu X. Improving energy performance on water allocation networks through appropriate stream merging. Chinese Journal of Chemical Engineering , 2008, 16(3): 480–484 doi: 10.1016/S1004-9541(08)60109-3
73
Feng X, Li Y C, Shen R J. A new approach to design energy efficient water allocation networks. Applied Thermal Engineering , 2009, 29(11-12): 2302–2307 doi: 10.1016/j.applthermaleng.2008.11.007
74
Sorin M, Savulescu L. On minimization of the number of heat exchangers in water networks. Heat Trans Eng , 2004, 25(5): 30–38 doi: 10.1080/01457630490459120
75
Bagajewicz M, Rodera H, Savelski M. Energy efficient water utilization systems in process plants. Computers & Chemical Engineering , 2002, 26(1): 59–79 doi: 10.1016/S0098-1354(01)00751-7
76
Zheng X, Feng X, Cao D. Design water allocation network with minimum fresh water and energy consumption. Comput Aided Chem Eng , 2003, 15: 388–393 doi: 10.1016/S1570-7946(03)80575-8
77
Savulescu L, Kim J K, Smith R. Studies on simultaneous energy and water minimization—Part II: Systems with maximum re-use of water. Chemical Engineering Science , 2005, 60(12): 3291–3308 doi: 10.1016/j.ces.2004.12.036
78
Manan Z A, Tea S Y, Wan Alwi S R. A new technique for simultaneous water and energy minimization in process plant. Chemical Engineering Research & Design , 2009, 87(11): 1509–1519 doi: 10.1016/j.cherd.2009.04.013
79
Wan Alwi S R, Ismail A, Manan Z A, Handani Z B. A new graphical approach for simultaneous mass and energy minimization. Applied Thermal Engineering , 2011, 31(6-7): 1021–1030 doi: 10.1016/j.applthermaleng.2010.11.026
80
Bogataj M, Bagajewicz M. Synthesis of non-isothermal heat integrated water networks in chemical processes. Computers & Chemical Engineering , 2008, 32(12): 3130–3142 doi: 10.1016/j.compchemeng.2008.05.006
81
Dong H G, Lin C Y, Chang C T. Simultaneous optimization approach for integrated water-allocation and heat-exchange networks. Chemical Engineering Science , 2008, 63(14): 3664–3678 doi: 10.1016/j.ces.2008.04.044
82
Leewongtanawit B, Kim J K. Synthesis and optimization of heat-integrated multiple contaminant water systems. Chemical Engineering and Processing , 2008, 47(4): 670–694 doi: 10.1016/j.cep.2006.12.018
83
Polley G T, Picón-Nú?ez M, López-Maciel J J. Design of water and heat recovery networks for the simultaneous minimization of water and energy consumption. Applied Thermal Engineering , 2010, 30(16): 2290–2299 doi: 10.1016/j.applthermaleng.2010.03.031
84
Boix M, Pibouleau L, Montastruc L, Azzaro-Pantel C, Domenech S. Minimizing water and energy consumptions in water and heat exchange networks. Applied Thermal Engineering , 2012, 36: 442–455 doi: 10.1016/j.applthermaleng.2011.10.062
85
Sahu G C, Bandyoadhyay S. Energy optimization in heat integrated water allocation networks. Chemical Engineering Science , 2012, 69(1): 352–364 doi: 10.1016/j.ces.2011.10.054
86
Huang Y L, Fan L T. Analysis of a work exchanger network. Industrial & Engineering Chemistry Research , 1996, 35(10): 3528–3538 doi: 10.1021/ie9507383
87
Jiang Z D, Jin Y M, Yin X W, Sun F Z, Ye C H, Zhang C Z. Discussion of piston energy recovery schemes. Zhejiang Journal of Engineer Institute. , 1987, 3: 45–54 (in Chinese)
88
Yang S Z, Ma X B. The method of recovery the stream energy from the raw material gas in synthesis ammonia wet decarbonization process. Chemical Fertilizer Industry , 2006, 33: 17–19 (in Chinese)
89
Kyle B G. Chemical and Process Thermodynamics. New Jersey: Prentice Hall, 1992: 527
90
Zhang J Z, Zhang X J, Liu X M, Zhang X P, Zhu N S. The research of the devices in RO seawater desalination process. Technology Water Treatment , 2010, 36(6): 42–46 (in Chinese)
91
William T A, David S L. A twelve-year history of large scale application of work-exchanger energy recovery technology. Desalination , 2001, 138(1-3): 201–206 doi: 10.1016/S0011-9164(01)00265-X
92
Merten U. Desalination by Reverse Osmosis. Massachusetts: MIT Press, 1966
93
Cheng C Y. US Patent 3489159, 1970.
94
Taylor J. US Patent 3825122, 1974
95
Song R W. The trial operation of Water turbine energy device is successful in our plant. M-sized Nitrogen Fertilizer Progross , 1986, 3: 18–19 (in Chinese)
96
Liu Q F, Zhou Y H, Ding W X. The review of hydraulic energy utilization technologies. J Chem Ind Eng , 2004, 25(4): 5–8 (in Chinese)
97
Ju M W, Chang Y Q, Zhou Y H. The review of the industry hydraulic energy recovery technology. Energy Conservation Technology , 2005, 134: 518–521 (in Chinese)
98
Yang S Z, Wang Y D. The research and selection of the natural gas desulfurization and decarbonization method. Chemical engineering of oil and gas , 2006, 35(5): 364–367 (in Chinese)
99
Fu J P, Li Y T, Yang S Z. The summary of the HST 40/13 energy recovery devices operation. Chemical Fertilizer industry , 2003, 31(3): 42–47 (in Chinese)
100
Yang S Z, Li S J, Li J Q, Qiu Z Q. Technical and economic analysis of applying energy recovery devices to modify copper wash process. Chemical Fertilizer Design , 2003, 41(6): 50–52 (in Chinese)
101
Schneider B S. Operation and control of a work exchanger energy recovery system based on the Singapore project. Desalination , 2005, 184(1-3): 197–210 doi: 10.1016/j.desal.2005.04.031
102
Pan X H, Wang S H, Ge Y H, Wang X N. The development and applying of energy recovery technology in the RO seawater desalination system. China Water & Wastewater , 2010, 26(16): 16–19 (in Chinese)
103
Al Hawaj O M. US patent 20040052639A1
104
A1-Hawaj O M. The work exchanger for reverse osmosis plants. Desalination , 2003, 157: 23–27
105
Stover R L. Development of a fourth generation energy recovery device—A CTO’s notebook. Desalination , 2004, 165: 313–321
106
Cameron I B, Clemente R B. SWRO with ERI’s PX pressure exchanger device-a global survey. Desalination , 2008, 221(1-3): 136–142 doi: 10.1016/j.desal.2007.02.050
107
Migliorini G, Luzzo E. Seawater reverse osmosis plant using the pressure exchanger for energy recovery: a calculation model. Desalination , 2004, 165: 289–298
108
Mambrettia S, Orsia E, Gagliardib S, Stoverc R. Behaviour of energy recovery devices in unsteady flow conditions and application in the modelling of the Hamma desalination plant. Desalination , 2009, 238(1-3): 233–245 doi: 10.1016/j.desal.2008.02.015