1. Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; 2. National Institute of Clean-and-Low-Carbon Energy, Beijing 102209, China
The effect of adding Co, Ni or La on the methanation activity of a Mo-based sulfur-resistant catalyst was investigated. As promoters, Co, Ni and La all improved the methanation activity of a 15% MoO3/Al2O3 catalyst but to different extents. Similar improvements were also found when Co, Ni or La was added to a 15% MoO3/25%-CeO2-Al2O3 catalyst. The promotion effects of Co and Ni were better than that of La. However, the catalytic methanation activity deteriorated the most with time for the Ni-promoted catalyst. The used catalysts were analyzed by nitrogen adsorption measurement, X-ray diffraction and X-ray photoelectron spectroscopy.
Corresponding Author(s):
LI Zhenhua,Email:zhenhua@tju.edu.cn; MA Xinbin,Email:xbma@tju.edu.cn
引用本文:
. Effect of a promoter on the methanation activity of a Mo-based sulfur-resistant catalyst[J]. Frontiers of Chemical Science and Engineering, 2013, 7(1): 88-94.
Can LIN, Haiyang WANG, Zhenhua LI, Baowei WANG, Xinbin MA, Shaodong QIN, Qi SUN. Effect of a promoter on the methanation activity of a Mo-based sulfur-resistant catalyst. Front Chem Sci Eng, 2013, 7(1): 88-94.
Adachi M, Contescu C, Schwarz J A. Catalyst preparation variables that affect the creation of active sites for HDS on Co/Mo/Al2O3 catalytic materials. Journal of Catalysis , 1996, 162(1): 66–75 doi: 10.1006/jcat.1996.0260
2
Pecoraro T A, Chianelli R R. Hydrodesulfurization catalysis by transition metal sulfides. Journal of Catalysis , 1981, 67(2): 430–445 doi: 10.1016/0021-9517(81)90303-1
3
Ho T C. Hydrodenitrogenation catalysis. Catalysis Reviews. Science and Engineering , 1988, 30(1): 117–160 doi: 10.1080/01614948808078617
4
Zou J, Schrader G L. Multicomponent thin film molybdate catalysts for the selective oxidation of 1,3-butadiene. Journal of Catalysis , 1996, 161(2): 667–686 doi: 10.1006/jcat.1996.0229
5
Brito J L, Barbosa A L, Albornoz A, Severino F, Laine J. Nickel molybdate as precursor of HDS catalysts: effect of phase composition. Catalysis Letters , 1994, 26(3-4): 329–337 doi: 10.1007/BF00810606
6
Brito J L, Barbosa A L. Effect of phase composition of the oxidic precursor on the HDS activity of the sulfided molybdates of Fe(II), Co(II), and Ni(II). Journal of Catalysis , 1997, 171(2): 467–475 doi: 10.1006/jcat.1997.1796
7
Travert A, Dujardin C, Maugé F, Veilly E, Cristol S, Paul J F, Payen E. CO adsorption on CoMo and NiMo sulfide catalysts: a combined IR and DFT study. Journal of Physical Chemistry B , 2006, 110(3): 1261–1270 doi: 10.1021/jp0536549
8
Prins R, de Beer V H J, Somorjai G A. Structure and function of the catalyst and the promoter in Co-Mo hydrodesulfurization catalysts. Catalysis Reviews. Science and Engineering , 1989, 31(1-2): 1–41 doi: 10.1080/01614948909351347
9
Byskov L S, N?rskov J K, Clausen B S, Tops?e H. DFT calculations of unpromoted and promoted MoS2-based hydrodesulfurization catalysts. Journal of Catalysis , 1999, 187(1): 109–122 doi: 10.1006/jcat.1999.2598
10
Sorescu D C, Sholl D S, Cugini A V. Density functional theory studies of the interaction of H, S, Ni-H, and Ni-S complexes with the MoS2 basal plane. Journal of Physical Chemistry B , 2004, 108(1): 239–249 doi: 10.1021/jp035824s
11
Tops?e H, Clausen B S, Candia R, Wivel C, M?rup S. In situ M?ssbauer emission spectroscopy studies of unsupported and supported sulfided Co-Mo hydrodesulfurization catalysts: evidence for and nature of a Co-Mo-S phase. Journal of Catalysis , 1981, 68(2): 433–452 doi: 10.1016/0021-9517(81)90114-7
12
Wivel C, Candia R, Clausen B S, M?rup S, Tops?e H. On the catalytic significance of a Co-Mo-S phase in Co-Mo/Al2O3 hydrodesulfurization catalysts: combined in situ M?ssbauer emission spectroscopy and activity studies. Journal of Catalysis , 1981, 68(2): 453–463 doi: 10.1016/0021-9517(81)90115-9
13
Niemann W, Calusen B S, Tops?e H. X-ray absorption studies of the Ni environment in Ni-Mo-S. Catalysis Letters , 1990, 4(4-6): 355–363 doi: 10.1007/BF00765321
14
Startsev A N. The mechanism of HDS catalysis. Catalysis Reviews. Science and Engineering , 1995, 37(3): 353–423 doi: 10.1080/01614949508006446
15
Rodriguez J A. Interaction of hydrogen and thiophene with Ni/MoS2 and Zn/MoS2 surfaces: a molecular orbital study. Journal of Physical Chemistry B , 1997, 101(38): 7524–7534 doi: 10.1021/jp971268o
16
Byskov L S, Hammer B, N?rskov J K, Clausen B S, Tops?e H. Sulfur bonding in MoS2 and Co-Mo-S structures. Catalysis Letters , 1997, 47(3-4): 177–182 doi: 10.1023/A:1019009105792
17
Rodriguez J A, Dvorak J, Jirsak T, Li S Y, Hrbek J, Capitano A T, Gabelnick A M, Gland J L. Chemistry of thiophene, pyridine, and cyclohexylamine on Ni/MoSx and Ni/S/Mo(110) surfaces: role of nickel in hydrodesulfurization and hydrodenitrogenation processes. Journal of Physical Chemistry B , 1999, 103(39): 8310–8318 doi: 10.1021/jp991683b
18
Yamashita K, Barreto L. Energyplexes for the 21st century: coal gasification for co-producing hydrogen, electricity and liquid fuels. Energy , 2005, 30(13): 2453–2473 doi: 10.1016/j.energy.2004.12.002
19
Williams R H. Toward zero emissions from coal in China. Energy for Sustainable Development , 2001, 5(4): 39–65 doi: 10.1016/S0973-0826(08)60285-9
20
Gao Y L, Fang X C, Cheng Z M. Development and application of ex-situ presulfurization technology for hydrotreating catalysts in China. Frontiers of Chemical Science and Engineering , 2011, 5(3): 287–296 doi: 10.1007/s11705-010-0529-2
21
Hou P Y, Wise H. Kinetic studies with a sulfur-tolerant methanation catalyst. Journal of Catalysis , 1985, 93(2): 409–416 doi: 10.1016/0021-9517(85)90188-5
22
Fu Y L, Tang X B, Huang Z G, Fan C Z, Ji M R, Wu J X. Valency and adsorption characteristics of a sulphided MoO3/γ-A12O3 methanation catalyst. Applied Catalysis , 1989, 55(1): 11–20 doi: 10.1016/S0166-9834(00)82313-1
23
Wang M W, Luo L T, Li F Y, Wang J J. Effect of La2O3 on methanation of CO and CO2 over Ni-Mo/γ-Al2O3 catalyst. Journal of Rare Earths , 2000, 18(1): 22–26
24
Wang B W, Ding G Z, Shang Y G, Lv J, Wang H Y, Wang E D, Li Z H, Ma X B, Qin S D, Sun Q. Effects of MoO3 loading and calcination temperature on the activity of the sulphur-resistant methanation catalyst MoO3/γ-Al2O3. Applied Catalysis A, General , 2012, 431-432(1): 144–150 doi: 10.1016/j.apcata.2012.04.029
25
Liu X Y, Liu J Z, Geng F F, Li Z K, Li P, Gong W L. Synthesis and properties of PdO/CeO2-Al2O3 catalysts for methane combustion. Frontiers of Chemical Science and Engineering , 2012, 6(1): 34–37 doi: 10.1007/s11705-011-1163-3
26
Kumar M, Aberuagba F, Gupta J K, Rawat K S, Sharma L D, Dhar G M. Temperature-programmed reduction and acidic properties of molybdenum supported on MgO-Al2O3 and their correlation with catalytic activity. Journal of Molecular Catalysis A Chemical , 2004, 213(2): 217–223 doi: 10.1016/j.molcata.2003.12.005
27
Trovarelli A. Catalytic properties of ceria and CeO2-containing materials. Catalysis Reviews , 1996, 38(4): 439–520 doi: 10.1080/01614949608006464
28
Wang B W, Shang Y G, Ding G Z, Lv J, Wang H Y, Wang E D, Li Z H, Ma X B, Qin S D, Sun Q. Effect of the ceria-alumina composite support on the Mo-based catalyst’s sulfur-resistant activity for the synthetic natural gas process. Reaction Kinetics. Mechanisms and Catalysis , 2012, 106(2): 495–506