Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2013, Vol. 7 Issue (1): 88-94   https://doi.org/10.1007/s11705-013-1301-1
  RESEARCH ARTICLE 本期目录
Effect of a promoter on the methanation activity of a Mo-based sulfur-resistant catalyst
Effect of a promoter on the methanation activity of a Mo-based sulfur-resistant catalyst
Can LIN1, Haiyang WANG1, Zhenhua LI1(), Baowei WANG1, Xinbin MA1(), Shaodong QIN2, Qi SUN2
1. Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; 2. National Institute of Clean-and-Low-Carbon Energy, Beijing 102209, China
 全文: PDF(200 KB)   HTML
Abstract

The effect of adding Co, Ni or La on the methanation activity of a Mo-based sulfur-resistant catalyst was investigated. As promoters, Co, Ni and La all improved the methanation activity of a 15% MoO3/Al2O3 catalyst but to different extents. Similar improvements were also found when Co, Ni or La was added to a 15% MoO3/25%-CeO2-Al2O3 catalyst. The promotion effects of Co and Ni were better than that of La. However, the catalytic methanation activity deteriorated the most with time for the Ni-promoted catalyst. The used catalysts were analyzed by nitrogen adsorption measurement, X-ray diffraction and X-ray photoelectron spectroscopy.

Key wordssulfur-resistant    methanation    promoter
收稿日期: 2012-07-07      出版日期: 2013-03-05
Corresponding Author(s): LI Zhenhua,Email:zhenhua@tju.edu.cn; MA Xinbin,Email:xbma@tju.edu.cn   
 引用本文:   
. Effect of a promoter on the methanation activity of a Mo-based sulfur-resistant catalyst[J]. Frontiers of Chemical Science and Engineering, 2013, 7(1): 88-94.
Can LIN, Haiyang WANG, Zhenhua LI, Baowei WANG, Xinbin MA, Shaodong QIN, Qi SUN. Effect of a promoter on the methanation activity of a Mo-based sulfur-resistant catalyst. Front Chem Sci Eng, 2013, 7(1): 88-94.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-013-1301-1
https://academic.hep.com.cn/fcse/CN/Y2013/V7/I1/88
Fig.1  
Fig.1  
Fig.2  
Fig.2  
Fig.3  
Fig.3  
Fig.4  
Fig.4  
CatalystBET surface area /(m2?g–1)Pore volume /(cm3?g–1)Pore size /nm
CoMoCeAlNiMoCeAlLaMoCeAl107.1102.0110.80.110.150.163.74.84.5
Tab.1  
Fig.5  
Fig.5  
Fig.6  
Fig.6  
CatalystCarbon deposit /%C–O/%C=O/%
CoMoCeAlNiMoCeAlLaMoCeAl24.1629.6524.002.507.593.780.002.861.63
Tab.2  
1 Adachi M, Contescu C, Schwarz J A. Catalyst preparation variables that affect the creation of active sites for HDS on Co/Mo/Al2O3 catalytic materials. Journal of Catalysis , 1996, 162(1): 66–75
doi: 10.1006/jcat.1996.0260
2 Pecoraro T A, Chianelli R R. Hydrodesulfurization catalysis by transition metal sulfides. Journal of Catalysis , 1981, 67(2): 430–445
doi: 10.1016/0021-9517(81)90303-1
3 Ho T C. Hydrodenitrogenation catalysis. Catalysis Reviews. Science and Engineering , 1988, 30(1): 117–160
doi: 10.1080/01614948808078617
4 Zou J, Schrader G L. Multicomponent thin film molybdate catalysts for the selective oxidation of 1,3-butadiene. Journal of Catalysis , 1996, 161(2): 667–686
doi: 10.1006/jcat.1996.0229
5 Brito J L, Barbosa A L, Albornoz A, Severino F, Laine J. Nickel molybdate as precursor of HDS catalysts: effect of phase composition. Catalysis Letters , 1994, 26(3-4): 329–337
doi: 10.1007/BF00810606
6 Brito J L, Barbosa A L. Effect of phase composition of the oxidic precursor on the HDS activity of the sulfided molybdates of Fe(II), Co(II), and Ni(II). Journal of Catalysis , 1997, 171(2): 467–475
doi: 10.1006/jcat.1997.1796
7 Travert A, Dujardin C, Maugé F, Veilly E, Cristol S, Paul J F, Payen E. CO adsorption on CoMo and NiMo sulfide catalysts: a combined IR and DFT study. Journal of Physical Chemistry B , 2006, 110(3): 1261–1270
doi: 10.1021/jp0536549
8 Prins R, de Beer V H J, Somorjai G A. Structure and function of the catalyst and the promoter in Co-Mo hydrodesulfurization catalysts. Catalysis Reviews. Science and Engineering , 1989, 31(1-2): 1–41
doi: 10.1080/01614948909351347
9 Byskov L S, N?rskov J K, Clausen B S, Tops?e H. DFT calculations of unpromoted and promoted MoS2-based hydrodesulfurization catalysts. Journal of Catalysis , 1999, 187(1): 109–122
doi: 10.1006/jcat.1999.2598
10 Sorescu D C, Sholl D S, Cugini A V. Density functional theory studies of the interaction of H, S, Ni-H, and Ni-S complexes with the MoS2 basal plane. Journal of Physical Chemistry B , 2004, 108(1): 239–249
doi: 10.1021/jp035824s
11 Tops?e H, Clausen B S, Candia R, Wivel C, M?rup S. In situ M?ssbauer emission spectroscopy studies of unsupported and supported sulfided Co-Mo hydrodesulfurization catalysts: evidence for and nature of a Co-Mo-S phase. Journal of Catalysis , 1981, 68(2): 433–452
doi: 10.1016/0021-9517(81)90114-7
12 Wivel C, Candia R, Clausen B S, M?rup S, Tops?e H. On the catalytic significance of a Co-Mo-S phase in Co-Mo/Al2O3 hydrodesulfurization catalysts: combined in situ M?ssbauer emission spectroscopy and activity studies. Journal of Catalysis , 1981, 68(2): 453–463
doi: 10.1016/0021-9517(81)90115-9
13 Niemann W, Calusen B S, Tops?e H. X-ray absorption studies of the Ni environment in Ni-Mo-S. Catalysis Letters , 1990, 4(4-6): 355–363
doi: 10.1007/BF00765321
14 Startsev A N. The mechanism of HDS catalysis. Catalysis Reviews. Science and Engineering , 1995, 37(3): 353–423
doi: 10.1080/01614949508006446
15 Rodriguez J A. Interaction of hydrogen and thiophene with Ni/MoS2 and Zn/MoS2 surfaces: a molecular orbital study. Journal of Physical Chemistry B , 1997, 101(38): 7524–7534
doi: 10.1021/jp971268o
16 Byskov L S, Hammer B, N?rskov J K, Clausen B S, Tops?e H. Sulfur bonding in MoS2 and Co-Mo-S structures. Catalysis Letters , 1997, 47(3-4): 177–182
doi: 10.1023/A:1019009105792
17 Rodriguez J A, Dvorak J, Jirsak T, Li S Y, Hrbek J, Capitano A T, Gabelnick A M, Gland J L. Chemistry of thiophene, pyridine, and cyclohexylamine on Ni/MoSx and Ni/S/Mo(110) surfaces: role of nickel in hydrodesulfurization and hydrodenitrogenation processes. Journal of Physical Chemistry B , 1999, 103(39): 8310–8318
doi: 10.1021/jp991683b
18 Yamashita K, Barreto L. Energyplexes for the 21st century: coal gasification for co-producing hydrogen, electricity and liquid fuels. Energy , 2005, 30(13): 2453–2473
doi: 10.1016/j.energy.2004.12.002
19 Williams R H. Toward zero emissions from coal in China. Energy for Sustainable Development , 2001, 5(4): 39–65
doi: 10.1016/S0973-0826(08)60285-9
20 Gao Y L, Fang X C, Cheng Z M. Development and application of ex-situ presulfurization technology for hydrotreating catalysts in China. Frontiers of Chemical Science and Engineering , 2011, 5(3): 287–296
doi: 10.1007/s11705-010-0529-2
21 Hou P Y, Wise H. Kinetic studies with a sulfur-tolerant methanation catalyst. Journal of Catalysis , 1985, 93(2): 409–416
doi: 10.1016/0021-9517(85)90188-5
22 Fu Y L, Tang X B, Huang Z G, Fan C Z, Ji M R, Wu J X. Valency and adsorption characteristics of a sulphided MoO3/γ-A12O3 methanation catalyst. Applied Catalysis , 1989, 55(1): 11–20
doi: 10.1016/S0166-9834(00)82313-1
23 Wang M W, Luo L T, Li F Y, Wang J J. Effect of La2O3 on methanation of CO and CO2 over Ni-Mo/γ-Al2O3 catalyst. Journal of Rare Earths , 2000, 18(1): 22–26
24 Wang B W, Ding G Z, Shang Y G, Lv J, Wang H Y, Wang E D, Li Z H, Ma X B, Qin S D, Sun Q. Effects of MoO3 loading and calcination temperature on the activity of the sulphur-resistant methanation catalyst MoO3/γ-Al2O3. Applied Catalysis A, General , 2012, 431-432(1): 144–150
doi: 10.1016/j.apcata.2012.04.029
25 Liu X Y, Liu J Z, Geng F F, Li Z K, Li P, Gong W L. Synthesis and properties of PdO/CeO2-Al2O3 catalysts for methane combustion. Frontiers of Chemical Science and Engineering , 2012, 6(1): 34–37
doi: 10.1007/s11705-011-1163-3
26 Kumar M, Aberuagba F, Gupta J K, Rawat K S, Sharma L D, Dhar G M. Temperature-programmed reduction and acidic properties of molybdenum supported on MgO-Al2O3 and their correlation with catalytic activity. Journal of Molecular Catalysis A Chemical , 2004, 213(2): 217–223
doi: 10.1016/j.molcata.2003.12.005
27 Trovarelli A. Catalytic properties of ceria and CeO2-containing materials. Catalysis Reviews , 1996, 38(4): 439–520
doi: 10.1080/01614949608006464
28 Wang B W, Shang Y G, Ding G Z, Lv J, Wang H Y, Wang E D, Li Z H, Ma X B, Qin S D, Sun Q. Effect of the ceria-alumina composite support on the Mo-based catalyst’s sulfur-resistant activity for the synthetic natural gas process. Reaction Kinetics. Mechanisms and Catalysis , 2012, 106(2): 495–506
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed