Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2013, Vol. 7 Issue (2): 192-201   https://doi.org/10.1007/s11705-013-1319-4
  RESEARCH ARTICLE 本期目录
A chemical etching route to controllable fabrication of TiO2 hollow nanospheres for enhancing their photocatalytic activity
A chemical etching route to controllable fabrication of TiO2 hollow nanospheres for enhancing their photocatalytic activity
Weixin ZHANG1,2(), Jie XING1,2, Zeheng YANG1,2, Mei KONG1,2, Hongxu YAO1,2
1. School of Chemical Engineering, Hefei University of Technology, Anhui 230009, China; 2. Anhui Key Laboratory of Controllable Chemical Reaction & Material Chemical Engineering, Anhui 230009, China
 全文: PDF(543 KB)   HTML
Abstract

The TiO2 hollow nanospheres with diameters of about 230 nm were prepared by a simple and controllable route based on hydrolysis of Ti(OBu)4 on the surfaces of the Cu2O solid nanospheres followed by inward etching of the Cu2O nanospheres. The as-prepared samples were characterized by X-ray diffraction, transmission electron microscopy and scanning electron microscopy. The further post-heat treatment led to the high crystallization of the TiO2 hollow nanospheres. The photocatalytic performances of these samples were evaluated for the photodegradation of rhodamine B (RhB) under UV-light irradiation. The as-prepared TiO2 hollow nanospheres showed higher photocatalytic activity than the CuO and the CuO/TiO2 hollow nanospheres. Effects of temperature and time for post-heat treatment of TiO2 as well as initial RhB concentrations on the RhB photodegradation have also been studied. The results show that the TiO2 hollow nanospheres have the good reusability as photocatalysts and are promising in waste water treatment.

Key wordsTiO2    hollow nanospheres    rhodamine B    photocatalytic activity
收稿日期: 2012-10-26      出版日期: 2013-06-05
Corresponding Author(s): ZHANG Weixin,Email:wxzhang@hfut.edu.cn   
 引用本文:   
. A chemical etching route to controllable fabrication of TiO2 hollow nanospheres for enhancing their photocatalytic activity[J]. Frontiers of Chemical Science and Engineering, 2013, 7(2): 192-201.
Weixin ZHANG, Jie XING, Zeheng YANG, Mei KONG, Hongxu YAO. A chemical etching route to controllable fabrication of TiO2 hollow nanospheres for enhancing their photocatalytic activity. Front Chem Sci Eng, 2013, 7(2): 192-201.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-013-1319-4
https://academic.hep.com.cn/fcse/CN/Y2013/V7/I2/192
Fig.1  
Fig.2  
Fig.3  
Fig.4  
PhotocatalystsRemoval ratio/%ka)/h-1R2b)
TiO298.691.4600.994
CuO/TiO272.430.3500.989
CuO55.520.1940.992
Tab.1  
SampleSurface area/(m2·g-1)Pore volume/(cm3·g-1)Pore size /nm
TiO248.0670.25715.916
CuO/TiO223.7100.13915.875
CuO10.6520.08725.960
Tab.2  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
1 Lin G F, Zheng J W, Xu R. Template-free synthesis of uniform CdS hollow nanospheres and their photocatalytic activities. Journal of Physical Chemistry C , 2008, 112(19): 7363–7370
2 Xu L C, Dai J D, Pan J M, Li X X, Huo P W, Yan Y S, Zou X B, Zhang R X. Performance of rattle-type magnetic mesoporous silica spheres in the adsorption of single and binary antibiotics. Chemical Engineering Journal , 2011, 174(1): 221–230
3 Zhang X J, Zhang W X, Yang Z H, Zhang Z. Nanostructured hollow spheres of hydroxyapatite: preparation and potential application in drug delivery. Frontiers of Chemical Science and Engineering, 2012, 6(3): 246–252
4 Yao Y, McDowell M T, Ryu I, Wu H, Liu N, Hu L, Nix W D, Cui Y. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Letters , 2011, 11(7): 2949–2954
5 Leng W G, Chen M, Zhou S X, Wu L M. Capillary force induced formation of monodisperse polystyrene/silica organic-inorganic hybrid hollow spheres. Langmuir , 2010, 26(17): 14271–14275
6 Chen Y L, Li Y, Chen Y X, Liu X J, Zhang M, Li B Z, Yang Y G. Preparation of hollow silica spheres with holes on the shells. Chemical Communications , 2009, 45(34): 5177–5179
7 Li W J, Xie F, Hua D X, Zhang C L, Dai C, Yu Z Y, Qi M Z, Yu S J. Preparation of P2O5-SiO2 hollow microspheres in the presence of phosphoric acid . Frontiers of Chemical Science and Engineering , 2011, 5(3): 314–317
8 Joo J B, Zhang Q, Lee I, Dahl M, Zaera F, Yin Y D. Mesoporous anatase titania hollow nanostructures though silica-protected calcinations. Advanced Functional Materials , 2012, 22(1): 166–174
9 Xu H, Chen X Q, Ouyang S X, Kako T, Ye J H. Size-dependent mie’s scattering effect on TiO2 spheres for the superior photoactivity of H2 evolution. Journal of Physical Chemistry C , 2012, 116(5): 3833–3839
10 Wang H Q, Miyauchi M, Ishikawa Y, Pyatenko A, Koshizaki N, Li Y, Li L, Li X, Bando Y, Golberg D. Single-crystalline rutile TiO2 hollow spheres: room-temperature synthesis, tailored visible- light- extinction, and effective scattering layer for quantum dot-sensitized solar cells. Journal of the American Chemical Society , 2011, 133(47): 19102–19109
11 Moon H G, Shim Y S, Su D, Park H H, Yoon S J, Jang H W. Embossed TiO2 thin films with tailored links between hollow hemispheres: synthesis and gas-sensing properties. Journal of Physical Chemistry C , 2011, 115(20): 9993–9999
12 Chen J S, Luan D, Li C M, Boey F Y C, Qiao S Z, Lou X W. TiO2 and SnO2 -TiO2 hollow spheres assembled from anatase TiO2 nanosheets with enhanced lithium storage properties. Chemical Communications , 2009, 46(43): 8252–8254
13 Li J, Zeng H C. Hollowing Sn-doped TiO2 nanospheres via ostwald ripening. Journal of the American Chemical Society , 2007, 129(51): 15839–15847
14 Wang D H, Choi D W, Li J, Yang Z G, Nie Z M, Kou R, Hu D H, Wang C M, Saraf L V, Zhang J G, Aksay I A, Liu J. Self-assembled TiO2 graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano , 2009, 3(4): 907–914
15 Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C, Photochemistry Reviews , 2000, 1(1): 1–21
16 Snaith H J, Schmidt-Mende L. Advances in liquid-electrolyte and solid-state dye-sensitized solar cells. Advanced Materials , 2007, 19(20): 3187–3200
17 Burda C, Lou Y B, Chen X B, Samia A C S, Stout J, Gole J L. Enhanced nitrogen doping in TiO2 nanoparticles. Nano Letters , 2003, 3(8): 1049–1051
18 Carp O, Huisman C L, Reller A. Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry , 2004, 32(1–2): 33–177
19 Pan J H, Zhang X W, Du A J, Sun D D, Leckie J O. Self-etching reconstruction of hierarchically mesoporous F-TiO2 hollow microspherical photocatalyst for concurrent membrane water purifications. Journal of the American Chemical Society , 2008, 130(34): 11256–11257
20 Shang S Q, Jiao X L, Chen D R. Template-free fabrication of TiO2 hollow spheres and their photocatalytic properties. ACS Applied Materials & Interfaces , 2012, 4(2): 860–865
21 Yang Z H, Zhang D P, Zhang W X, Chen M. Controlled synthesis of cuprous oxide nanospheres and copper sulfide hollow nanospheres. Journal of Physics and Chemistry of Solids , 2009, 70(5): 840–846
22 Kong M, Zhang W X, Yang Z H, Weng S Y, Chen Z X. Facile synthesis of CuO hollow nanospheres assembled by nanoparticles and their electrochemical performance. Applied Surface Science , 2011, 258(4): 1317–1321
23 Bhatkhande D S, Pangarkar V G, Beenackers A. ACM. Photocatalytic degradation for environmental applications–a review. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire) , 2002, 77(1): 102–116
24 Qin S Y, Xin F, Liu Y D, Yin X H, Ma W. Photocatalytic reduction of CO2 in methanol to methyl formate over CuO–TiO2 composite catalysts. Journal of Colloid and Interface Science , 2011, 356(1): 257–261
25 Maeda K, Domen K. New non-oxide photocatalysts designed for overall water splitting under visible light. Journal of Physical Chemistry C , 2007, 111(22): 7851–7861
26 Lei P X, Chen C C, Yang J, Ma W H, Zhao J C, Zang L. Degradation of dye pollutants by immobilized polyoxometalate with H2O2 under visible-light irradiation. Environmental Science & Technology , 2005, 39(21): 8466–8474
27 Wang X H, Li J G, Kamiyama H, Moriyoshi Y, Ishigaki T. Wavelength-sensitive photocatalytic degradation of methyl orange in aqueous suspension over iron(III)-doped TiO2 nanopowders under UV and visible light irradiation. Journal of Physical Chemistry B , 2006, 110(13): 6804–6809
28 Krysa J, Waldner G, Mě?t’ánková H, Jirkovsky J, Grabner G. Photocatalytic degradation of model organic pollutants on an immobilized particulate TiO2 layer: Roles of adsorption processes and mechanistic complexity. Applied Catalysis B: Environmental , 2006, 64(3–4): 290–301
29 Pan L, Zou J J, Zhang X W, Wang L. Water-mediated promotion of dye sensitization of TiO2 under visible light. Journal of the American Chemical Society , 2011, 133(26): 10000–10002
30 Jantawasu P, Sreethawong T, Chavadej S. Photocatalytic activity of nanocrystallin emesoporous-assembled TiO2 photocatalyst for degradation of methyl orange monoazo dye in aqueous wastewater. Chemical Engineering Journal , 2009, 155(1–2): 223–233
31 Yang L M, Yu L E, Ray M B. Degradation of paracetamol in aqueous solutions by TiO2 photocatalysis. Water Research , 2008, 42(13): 3480–3488
32 Chen L C, Huang C M, Gao C S, Wang G W, Hsiao M C. A comparative study of the effects of In2O3 and SnO2 modication on the photocatalytic activity and characteristics of TiO2. Chemical Engineering Journal , 2011, 175: 49–55
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed