Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2013, Vol. 7 Issue (2): 123-129   https://doi.org/10.1007/s11705-013-1325-6
  RESEARCH ARTICLE 本期目录
Events and reaction mechanisms during the synthesis of an Al2O3-TiB2 nanocomposite via high energy ball milling
Events and reaction mechanisms during the synthesis of an Al2O3-TiB2 nanocomposite via high energy ball milling
M. ABDELLAHI1(), M. ZAKERI2, H. BAHMANPOUR3
1. Materials Engineering Department, Islamic Azad University, Saveh Branch, Saveh Iran; 2. Ceramic Department, Materials and Energy Research Center, Tehran 31787/316, Iran; 3. Chemical engineering and Materials Science Department, University of California, Davis, CA 95616, USA
 全文: PDF(342 KB)   HTML
Abstract

An Al2O3-TiB2 nanocomposite was successfully synthesized by the high energy ball milling of Al, B2O3 and TiO2. The structures of the powdered particles formed at different milling times were evaluated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Thermodynamic calculations showed that the composite formed in two steps via highly exothermic mechanically induced self-sustaining reactions (MSRs). The composite started to form at milling times of 9–10 h but the reaction was not complete. The remaining starting materials were consumed by increasing the milling time to 15 h. The XRD patterns of the annealed powders showed that aluminum borate is one of the intermediate products and that it is consumed at higher temperatures. Heat treatment of the 6-h milled sample at 1100°C led to a complete formation of the composite. Increasing the milling time to 15 h led to a refining of the crystallite sizes. A nanocomposite powder with a mean crystallite size of 35–40 nm was obtained after milling for 15 h.

Key wordsball milling    nanocomposite    Al2O3    TiB2
收稿日期: 2013-01-23      出版日期: 2013-06-05
Corresponding Author(s): ABDELLAHI M.,Email:info@abdellahi.net   
 引用本文:   
. Events and reaction mechanisms during the synthesis of an Al2O3-TiB2 nanocomposite via high energy ball milling[J]. Frontiers of Chemical Science and Engineering, 2013, 7(2): 123-129.
M. ABDELLAHI, M. ZAKERI, H. BAHMANPOUR. Events and reaction mechanisms during the synthesis of an Al2O3-TiB2 nanocomposite via high energy ball milling. Front Chem Sci Eng, 2013, 7(2): 123-129.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-013-1325-6
https://academic.hep.com.cn/fcse/CN/Y2013/V7/I2/123
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Milling time /hCrystallite size / nmCrystallite size / nm
TiO2B2O3AlTiB2Al2O3
3464162--
6403551--
9342837--
10---5149
12---4340
15---3934
Tab.1  
Fig.7  
1 Mayrhofer P H, H?rling A, Karlsson, Sjolen J, Mitterer C, Hultman L. Self-organized nanostructures in the Ti-Al-N system. Applied Physics Letters ,2003, 83 (10): 2049–2051
2 Fahrenholtz W G, Hilmas G E, Talmy I G, Zaykoski J A.Oxidation of ultra-high temperature transition metal diboride ceramics.International Materials Reviews ,2012, 57(1): 61–72
3 Volonakis G, Tsetseris L, Logothetids S. Electronic and structural properties of TiB2 bulk, surface, and nanoscale effects. Materials ScienceβandβEngineering , 2011, 176(6): 484–489
4 Hausner H H. Titanium Metallurgy, in Modern Materials, Advances in Development and Application. New York: Academic press, 1960, 225–325
5 Mollica S, Sood D K, Evans P J, Dytlewski N,Short K T. Ion beam analysis of aluminium ion implanted titanium diboride thin ?lms. NuclearβInstruments andβMethodsβinβPhysics Research , 2002, 190(1-4): 736–741
6 Hag K Y, Yong L S, Kim H E. Oxidation behavior of titanium boride at elevated temperatures. Journal of the American Ceramic Society , 2001, 84(1): 239–241
doi: 10.1111/j.1151-2916.2001.tb00641.x
7 Li L H, Kim H E, Kang E S. Sintering and mechanical properties of titanium diboride with aluminum nitride as a sintering aid. Journal of the European Ceramic Society , 2002, 22(6): 973–977
doi: 10.1016/S0955-2219(01)00403-4
8 Liu G, Yan D, Zhang J. Microstructure and Mechanical Properties of Al2O3-TiB2 Composites. Journal of Wuhan University of Technology , 2011, 26(4): 696–699
9 Meyers M A, Olevsky E A, Ma J, Jamet M. Combustion synthesis/densi?cation of an Al2O3-TiB2 composite. Materials Science and Engineering A , 2001, 311(1-2): 83–99
doi: 10.1016/S0921-5093(01)00930-3
10 Merzhanov A G. History and recent development in SHS. Ceramics International , 1995, 21(5): 371–379
doi: 10.1016/0272-8842(95)96211-7
11 Zhu H E, Wang H Z, Ge L Q, Chen S, Wu S Q. Formation of composites fabricated by exothermic dispersion reaction in Al, B2O3 and TiO2 system. Transactions of Nonferrous Metals Society of China , 2007, 17(3): 590–594
12 Shari? M, Karimzadeh F, Enayati M H. Synthesis of titanium diboride reinforced alumina matrix nanocomposite by mechanochemical reaction of Al, B2O3 and TiO2. Journal of Alloys and Compounds , 2010, 502(2): 508–512
doi: 10.1016/j.jallcom.2010.04.207
13 Khaghani-Dehaghani M A, Ebrahimi-Kahrizsangi R, Setoudeh N, Nasiri-Tabrizi B. Mechanochemical synthesis of Al2O3-TiB2 nanocomposite powder from Al, H3BO3 and TiO2 mixture. Ref Met Hard Mat , 2011, 29(2): 244–249
doi: 10.1016/j.ijrmhm.2010.11.001
14 Suryanarayana C, Ivanov E, Boldyrev V V. The science and technology of mechanical alloying. Materials Science and Engineering A , 2001, 304: 151–158
doi: 10.1016/S0921-5093(00)01465-9
15 Surianarayana C. Recent developments in mechanical alloying. Reviews on Advanced Materials Science , 2011, 18(1): 203–211
16 Yadav T P, Yadav R M, Singh D P. Mechanical milling a top down approach for the synthesis of nanomaterials and nanocomposites. Journal forβNanoscienceβandβNanotechnology , 2012, 2(3): 22–48
17 Cullity B D. Elements of X-RAY Diffraction. New York: Addison-Wesely Publishing Company, 1956, 1234
18 Brandes E A, Brook G B. Smithells Metals Reference Book. London: Butterworth-Heinemann Ltd, 1992, 87–101
19 Takacs L. Self-sustaining reactions induced by ball milling. Progressβin MaterialsβScience , 2002, 47(4): 355–414
20 Takacs L, Balaz P, Torosyan AR. Ball milling-induced reduction of MoS2 with Al. Journalβof MaterialsβScience , 2006, 41(21): 7033–7039
21 Mukhanov V A., Kurakevich O O, Solozhenko V L. On the hardness of boron (III) oxide. Journal ofβSuperhard Materials , 2008, 30(1): 71–72
22 Fajans K, Barbe S W. Properties and structures of vitreous and crystalline boron oxide. Journal of the American Chemical Society , 1952, 74(11): 2761–2768
doi: 10.1021/ja01131a019
23 Auerkari P. Mechanical and Physical Properties of Engineering Alumina Ceramics. Finland: VTT Technical Res Cen, 1996, 51–57
24 Wash R A. Electromechanical Design Handbook. New York: R R Donnelley & Sons Comp, 1999, 21–65
25 Alforda N M, Penn S J. Sintered alumina with low dielectric loss. Journal of Applied Physics, 1996, 80(10): 5895–5898
26 Ernest H N, Monte C N. Mineral reference manual. New York: Van Nostrand Reinhold, 1991,
27 Koch C C. Amorphization by mechanical alloying. Journal of Non-Crystalline Solids , 1990, 117-118(2): 670–678
doi: 10.1016/0022-3093(90)90620-2
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed