Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2013, Vol. 7 Issue (3): 338-346   https://doi.org/10.1007/s11705-013-1335-4
  RESEARCH ARTICLE 本期目录
Anodic oxidation of azo dye C.I. Acid Red 73 by the yttrium-doped Ti/SnO2-Sb electrodes
Anodic oxidation of azo dye C.I. Acid Red 73 by the yttrium-doped Ti/SnO2-Sb electrodes
Li XU1,2(), Zhi GUO1,2, Lishun DU3
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; 2. Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, China; 3. Hualu Engineering & Technology Co., Ltd, Xi’an 710065, China
 全文: PDF(314 KB)   HTML
Abstract

This work was conducted to study the ability of anodic oxidation of azo dye C.I. Acid Red 73 (AR73) using the yttrium-doped Ti/SnO2-Sb electrodes. The effects of Sb doping level, yttrium doping level, thermal decomposition temperature and cycle times of dip-coating thermal decomposition on the properties of the electrodes were investigated. The results showed that the excellent electrochemical activity of Ti/SnO2-Sb-Y electrode can be achieved at a 7∶1 molar ratio of Sn∶Sb and thermal decomposition temperature of 550°C. Moreover when the cycle times of dip-coating and thermal decomposition were up to 10 times, the performance of the electrode tends to be stable. The Ti/SnO2-Sb electrodes doped with yttrium (0.5 mol-%) showed the most excellent electrochemical activity. In addition, the influences of operating variables, including current density, initial pH, dye concentration and support electrolyte, on the colour removal, chemical oxygen demand (COD) removal and current efficiency were also investigated. Our results confirmed that the current efficiency increased with the concentrations of dye and sodium chloride. Moreover, increasing the current density and the initial pH would reduce the current efficiency.

Key wordsSnO2-Sb    yttrium doping    anodic oxidation    azo dyes
收稿日期: 2013-01-04      出版日期: 2013-09-05
Corresponding Author(s): XU Li,Email:xuli620@163.com   
 引用本文:   
. Anodic oxidation of azo dye C.I. Acid Red 73 by the yttrium-doped Ti/SnO2-Sb electrodes[J]. Frontiers of Chemical Science and Engineering, 2013, 7(3): 338-346.
Li XU, Zhi GUO, Lishun DU. Anodic oxidation of azo dye C.I. Acid Red 73 by the yttrium-doped Ti/SnO2-Sb electrodes. Front Chem Sci Eng, 2013, 7(3): 338-346.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-013-1335-4
https://academic.hep.com.cn/fcse/CN/Y2013/V7/I3/338
PropertiesChemical structure
Molecular formula: C22H14N4Na2O7S2
Molecular weight: 556.490
λmax/nm: 518
CAS number: 5413-75-2
Color index number: 27290
Tab.1  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Operating variablesGCE /%SEC/KWh /(kg°COD)-1
Current density/( mA·cm-2)574.360.2
1068.2116.9
1563.3140.0
2038.7276.2
2533.7353.5
Dye concentration/(g·L-1)0.244.4199.7
0.563.3140.0
0.867.2132.0
NaCl concentration/(g·L-1)134.3254.6
263.3140.0
365.5125.8
468.2116.9
Initial pH368.0131.4
563.3140.0
759.8148.2
932.2276.0
1127.1328.0
Tab.2  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
1 Song S, Fan J Q, He Z Q, Zhan L Y, Liu Z W, Chen J M, Xu X H. Electrochemical degradation of azo dye C.I. Reactive red 195 by anodic oxidation on Ti/SnO2-Sb/PbO2 electrodes. Electrochimica Acta , 2010, 55(11): 3606–3613
doi: 10.1016/j.electacta.2010.01.101
2 Xu L, Du L S, Wang C, Xu W. Nanofiltration coupled with electrolytic oxidation in treating simulated dye wastewater. Journal of Membrane Science , 2012, 409-410: 329–334
doi: 10.1016/j.memsci.2012.04.001
3 Anissa A, Cheima F, Mourad B S A, Mahmoud D. Treatment of textile wastewater by a hybrid electrocoagulation/nanofiltration process. Journal of Hazardous Materials , 2009, 168(2-3): 868–874
doi: 10.1016/j.jhazmat.2009.02.112
4 Cheung W H, Szeto Y S, McKay G. Enhancing the adsorption capacities of acid dyes by chitosan nano-particles. Bioresource Technology , 2009, 100(3): 1143–1148
doi: 10.1016/j.biortech.2008.07.071
5 Cheung W H, Szeto Y S, McKay G. Intraparticle diffusion processes during acid dye adsorption onto chortosan. Bioresource Technology , 2007, 98(15): 2897–2904
doi: 10.1016/j.biortech.2006.09.045
6 Shi B Y, Li G H, Wang D S, Feng C H, Tang H X. Removal of direct dyes by coagulation: the performance of performed polymeric aluminium species. Journal of Hazardous Materials , 2007, 143(1-2): 567–574
doi: 10.1016/j.jhazmat.2006.09.076
7 Agata S, Eric G, Montserrat R, Ana M S. Then removal of sulphonated azo dyes by coagulation with chitosan. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2008, 330(2-3): 219–226
doi: 10.1016/j.colsurfa.2008.08.001
8 Lee J W, Choi S P, Ramesh T, Shim W G, Hee M. Evaluation of the performance of adsorption and coagulation processes for the maximum removal of reactive dyes. Dyes and Pigments , 2006, 69(3): 196–203
doi: 10.1016/j.dyepig.2005.03.008
9 Aleboyeh A, Olya M E, Aleboyeh H. Oxidative treatment of azo dyes in aqueous solution by potassium permanganate. Journal of Hazardous Materials , 2009, 162(2-3): 1530–1535
doi: 10.1016/j.jhazmat.2008.06.089
10 Fu F L, Wang Q, Tang B. Effective degradation of C.I. Acid Red 73 by advanced Fenton process. Journal of Hazardous Materials , 2010, 174(1-3): 17–22
doi: 10.1016/j.jhazmat.2009.09.009
11 Zhou M H, Sarkka H, Sillanpaa M. A comparative experimental study on methyl orange degradation by electrochemical oxidation on BDD and MMO electrodes. Separation and Purification Technology , 2011, 78(3): 290–297
doi: 10.1016/j.seppur.2011.02.013
12 Canizares P, Dominguez J A, Rodrigo M A, Villasenor J, Rodriguez J. Effect of the current intensity in the electrochemical oxidation of aqueous phenol wastes at an active carbon and steel anode. Industrial & Engineering Chemistry Research , 1999, 38(10): 3779–3785
doi: 10.1021/ie9901574
13 Li F, Zhou Y W, Yang W S, Chen G H, Yang F L. Electrochemical degradation of aqueous solution of Amaranth azo dye on ACF under potentiostatic model. Dyes and Pigments , 2008, 76(2): 440–446
doi: 10.1016/j.dyepig.2006.09.013
14 Yi F Y, Chen S X, Yuan C E. Effect of activated carbon fiber anode structure and electrolysis conditions on electrochemical degradation of dye wastewater. Journal of Hazardous Materials , 2008, 157(1): 79–87
doi: 10.1016/j.jhazmat.2007.12.093
15 Xu L N, Zhao H Z, Shi S Y, Zhang G Z, Ni J R. Electrolytic treatment of C.I. Acid orange 7 in aqueous solution using a three-dimensional electrode reactor. Dyes and Pigments , 2008, 77(1): 158–164
doi: 10.1016/j.dyepig.2007.04.004
16 Vlyssides A G, Loizidou M, Karlis P K, Zorpas A A, Papaioannou D. Electrochemical oxidation of textile dye wastewater using a Pt/Ti electrode. Journal of Hazardous Materials , 1999, 70(1-2): 41–52
doi: 10.1016/S0304-3894(99)00130-2
17 Zhu X P, Tong M P, Shi S Y, Zhao H Z, Ni J R. Essential explanation of the strong mineralization performance of boron-doped diamond electrodes. Environmental Science & Technology , 2008, 42(13): 4914–4920
doi: 10.1021/es800298p
18 Migliorini F L, Braga N A, Alves S A, Lanza M R V, Baldan M R, Ferreira N G. Anodic oxidation of wastewater containing the reactive organe 16 dye using heavily boron-doped diamond electrodes. Journal of Hazardous Materials , 2011, 192(3): 1683–1689
doi: 10.1016/j.jhazmat.2011.07.007
19 Cruz-Gonzalez K, Torres-Lopez O, Garcia-Leon A, Guzman-Mar J L, Reyes L H, Hernandez-Ramiez A, Peralta-Hernandez J M. Determination of optimum operating parameters for Acid Yellow 36 decolourization by electro-Fenton process using BDD cathode. Chemical Engineering Journal , 2010, 160(1): 199–206
doi: 10.1016/j.cej.2010.03.043
20 Robert M A, Tian M, Chen A C. A new approach to wastewater remediation based on bifunctional electrodes. Environmental Science & Technology , 2009, 43(13): 5100–5105
doi: 10.1021/es900582m
21 Chou W L, Wang C T, Chang C P, Chung M H, Kuo Y M. Removal of color and COD from dyeing wastewater by paired electrochemical oxidation. Fresenius Environmental Bulletin , 2011, 20(1): 78–85
22 Recio F J, Herrasti P, Sires I, Kulak A N, Bavykin D V, Poncedeleon C, Walsh F C. The preparation of PbO2 coating on reticulated vitreous carbon for the electro-oxidation of organic pollutants. Electrochimica Acta , 2011, 56(14): 5158–5165
doi: 10.1016/j.electacta.2011.03.054
23 Sires I, Low C T J, Poncedeleon C, Walsh F C. The deposition of nanostructured β-PbO2 coating from aqueous methanesulfonic acid for the electrochemical oxidation of organic pollutants. Electrochemistry Communications , 2010, 12(1): 70–74
doi: 10.1016/j.elecom.2009.10.038
24 Zhou M H, Dai Q Z, Lei L C, Ma C A, Wang D H. Long life modified lead dioxide anode for organic wastewater treatment: electrochemical characteristics and degradation mechanism. Environmental Science & Technology , 2005, 39(1): 363–370
doi: 10.1021/es049313a
25 Yao P D. Effects of Sb doping level on the properties of Ti/SnO2-Sb electrodes prepared using ultrasonic spray pyrolysis. Desalination , 2011, 267(2-3): 170–174
doi: 10.1016/j.desal.2010.09.021
26 Xu L, Guo Z, Du L S, He J. Decolourization and degradation of C.I. Acid Red 73 by anodic oxidation and the synergy technology of anodic oxidation coupling nanofiltration. Electrochimica Acta , 2013, 97: 150–159
doi: 10.1016/j.electacta.2013.01.148
27 Qu X, Tian M, Liao B Q, Chen A C. Enhanced electrochemical treatment of phenolic pollutants by an effective adsorption and release process. Electrochimica Acta , 2010, 55(19): 5367–5374
doi: 10.1016/j.electacta.2010.04.089
28 Montilla F, Morallon E, De Battisti A, Vazquez J L. Preparation and characterization of antimony-doped tin dioxide electrodes. Part 1. Electrochemical characterization. Journal of Chemical Physics B , 2004, 108(16): 5036–5043
doi: 10.1021/jp037480b
29 Zhang J G, Wei Y P, Jin G J, Wei G. Active stainless steel/SnO2-CeO2 anodes for pollutants oxidation prepared by thermal decomposition. Journal of Materials Science and Technology , 2010, 26(2): 187–192
doi: 10.1016/S1005-0302(10)60031-X
30 Cui Y H, Feng Y J, Liu Z Q. Influence of rare earths doping on the structure and electro-catalytic performance of Ti/Sb-SnO2 electrodes. Electrochimica Acta , 2009, 54(21): 4903–4909
doi: 10.1016/j.electacta.2009.04.041
31 Zhou Q F, Deng S B, Yang B, Huang J, Yu G. Efficient electrochemical oxidation of perfluorooctanoate using a Ti/SnO2-Sb-Bi anode. Environmental Science & Technology , 2011, 45(7): 2973–2979
doi: 10.1021/es1024542
32 Chen X M, Chen G H, Yue P L. Yue Po Lock, Stable Ti/IrOX-Sb2O5-SnO2 anode for O2 evolution with low Ir content. Journal of Physical Chemistry B , 2001, 105(20): 4623–4628
doi: 10.1021/jp010038d
33 Marco P, Giacomo C. Direct and mediated anodic oxidation of organic pollutants. Chemical Reviews , 2009, 109(12): 6541–6569
doi: 10.1021/cr9001319
34 Rodrigues E C P E, Olivi P. Preparation and Characterization of Sb-doped SnO2-films with controlled stoichiometry from polymeric precursors. Journal of Physics and Chemistry of Solids , 2003, 64(7): 1105–1112
doi: 10.1016/S0022-3697(03)00003-9
35 Santos I D, Gabriel S B, Afonso J C, Achilles J B D. Preparation and Characterization of Ti/SnO2-Sb electrode by Pechimi’s method for phenol oxidation. Materials Research , 2011, 14(3): 408–416
doi: 10.1590/S1516-14392011005000054
36 Chen X M, Chen G H. Anodic oxidation of Orange II on Ti/BDD electrode: Variable effects. Separation and Purification Technology , 2006, 48(1): 45–49
doi: 10.1016/j.seppur.2005.07.024
37 Rajkumar D, Kim J G, Palanivelu K. Indirect electrochemical oxidation of phenol in the presence of chloride for wastewater treatment. Chemical Engineering & Technology , 2005, 28(1): 98–105
doi: 10.1002/ceat.200407002
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed