Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2013, Vol. 7 Issue (3): 270-278   https://doi.org/10.1007/s11705-013-1337-2
  RESEARCH ARTICLE 本期目录
Sustainable H2 production from ethanol steam reforming over a macro-mesoporous Ni/Mg-Al-O catalytic monolith
Sustainable H2 production from ethanol steam reforming over a macro-mesoporous Ni/Mg-Al-O catalytic monolith
Ruixue GU1, Guangming ZENG1, Jingjing SHAO1, Yuan LIU1, Johannes W. Schwank2, Yongdan LI()
1. Tianjin Key Laboratory of Applied Catalysis Science and Technology and State Key Laboratory for Chemical Engineering (Tianjin University), School of Chemical Engineering, Tianjin University, Tianjin 300072, China; 2. Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109-2136, USA
 全文: PDF(653 KB)   HTML
Abstract

A macro-meso-porous monolithic Ni-based catalyst was prepared via an impregnation route using polystyrene foam as the template and then used in the steam reforming of ethanol to produce a H2-rich gas. The Ni/Mg-Al catalyst has a hierarchically macro-meso-porous structure as indicated by photographs and scanning electron microscopy (SEM). The surface area of the catalyst was 230 m2?g-1 and the Ni dispersion was 5.62%. Compared to the pelletized sample that was prepared without a template, the macro-meso-porous Ni/Mg-Al monolith exhibited superior reactivity in terms of H2 production and also had lower CH4 yields at 700oC and 800oC. Furthermore, the monolithic catalyst maintained excellent activity and H2 selectivity after 100-h on-stream at 700oC, as well as good resistance to coking and metal sintering.

Key wordsmacroporous Ni-based catalyst    monolith    hydrogen production    ethanol steam reforming
收稿日期: 2012-12-06      出版日期: 2013-09-05
Corresponding Author(s): LI Yongdan,Email:ydli@tju.edu.cn   
 引用本文:   
. Sustainable H2 production from ethanol steam reforming over a macro-mesoporous Ni/Mg-Al-O catalytic monolith[J]. Frontiers of Chemical Science and Engineering, 2013, 7(3): 270-278.
Ruixue GU, Guangming ZENG, Jingjing SHAO, Yuan LIU, Johannes W. Schwank, Yongdan LI. Sustainable H2 production from ethanol steam reforming over a macro-mesoporous Ni/Mg-Al-O catalytic monolith. Front Chem Sci Eng, 2013, 7(3): 270-278.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-013-1337-2
https://academic.hep.com.cn/fcse/CN/Y2013/V7/I3/270
Fig.1  
Fig.2  
Fig.3  
Fig.4  
SampleChemical composition /(wt-%)BET surface area /(m2?g-1)Average pore diameter /nmPore volume /(cm3?g-1)Ni dispersion /%Surface area of Ni /(m2?gcat-1)
NiMgAl
PS---2858.640.464--
Al2O3a)--52.72618.190.433--
MgO-Al2O3a)-16.938.32357.320.400--
Sample 19.8615.835.22307.640.3935.6237.0
Sample 210.115.535.11144.820.2512.4816.7
Tab.1  
Fig.5  
SampleH2CO2CH4COC2H4
1-700a)4.710.5000.0461.46-
1-8004.830.5100.0231.47-
2-7004.050.7000.3500.9390.011
2-8004.520.5630.0901.35-
Tab.2  
Fig.6  
SampleRelative coke formation /wt-%
1-700 a)11.25
1-8008.54
2-70039.66
2-80035.54
Tab.3  
Fig.7  
Fig.8  
1 Breen J P, Ross J R H. Methanol reforming for fuel-cell applications: Development of zirconia-containing Cu–Zn–Al catalysts. Catalysis Today , 1999, 51(3-4): 521-533
doi: 10.1016/S0920-5861(99)00038-3
2 Li Y D, Rui Z B, Xia C, Anderson M, Lin Y S. Performance of ionic-conducting ceramic/carbonate composite material as solid oxide fuel cell electrolyte and CO2 permeation membrane. Catalysis Today , 2009, 148(3-4): 303-309
doi: 10.1016/j.cattod.2009.08.009
3 Xia C, Li Y, Tian Y, Liu Q H, Wang Z M, Jia L J, Zhao Y C, Li Y D. Intermediate temperature fuel cell with a doped ceria-carbonate composite electrolyte. Journal of Power Sources , 2010, 195(10): 3149-3154
doi: 10.1016/j.jpowsour.2009.11.104
4 Cribb P H, Dove J E, Yamazaki S. A kinetic study of the oxidation of methanol using shock tube and computer simulation techniques. Combustion and Flame , 1992, 88(2): 186-200
doi: 10.1016/0010-2180(92)90051-P
5 Armor J N. The multiple roles for catalysis in the production of H2. Applied Catalysis A, General , 1999, 176(2): 159-176
doi: 10.1016/S0926-860X(98)00244-0
6 Vaidya P D, Rodrigues A E. Insight into steam reforming of ethanol to produce hydrogen for fuel cells. Chemical Engineering Journal , 2006, 117(1): 39-49
doi: 10.1016/j.cej.2005.12.008
7 Barroso M N, Galetti A E, Abello M C. Ni catalysts supported over MgAl2O4 modified with Pr for hydrogen production from ethanol steam reforming. Applied Catalysis A: General , 2011, 394(1-2): 124-131
8 Barroso M N, Gomez M E, Arrua L A, Abello M C. Hydrogen production by ethanol reforming over NiZnAl catalysts. Applied Catalysis A, General , 2006, 304: 116-123
doi: 10.1016/j.apcata.2006.02.033
9 Sehested J. Four challenges for nickel steam-reforming catalysts. Catalysis Today , 2006, 111(1-2): 103-110
doi: 10.1016/j.cattod.2005.10.002
10 Sun J, Qui X P, Wu F, Zhu W T. H2 from steam reforming of ethanol at low temperature over Ni/Y2O3, Ni/La2O3 and Ni/Al2O3 catalysts for fuel-cell application. International Journal of Hydrogen Energy , 2005, 30(4): 437-445
doi: 10.1016/j.ijhydene.2004.11.005
11 Fatsikostas A N, Kondarides D I, Verykios X E. Production of hydrogen for fuel cells by reformation of biomass-derived ethanol. Catalysis Today , 2002, 75(1-4): 145-155
doi: 10.1016/S0920-5861(02)00057-3
12 Yang G H, Tsubaki N, Shamoto J, Yoneyama Y, Zhang Y. Confinement effect and synergistic function of H-ZSM-5/Cu-ZnO-Al2O3 capsule catalyst for one-step controlled synthesis. Journal of the American Chemical Society , 2010, 132(23): 8129-8136
doi: 10.1021/ja101882a
13 Guliants V V, Carreon M A, Lin Y S. Ordered mesoporous and macroporous inorganic films and membranes. Journal of Membrane Science , 2004, 235(1-2): 53-72
doi: 10.1016/j.memsci.2004.01.019
14 Kucharczyk B, Tylus W, Kepiński L. Pd-based monolithic catalysts on metal supports for catalytic combustion of methane. Applied Catalysis B: Environmental , 2004, 49(1): 27-37
doi: 10.1016/j.apcatb.2003.11.006
15 Giroux T, Hwang S, Liu Y, Ruettinger W, Shore L. Monolithic structures as alternatives to particulate catalysts for the reforming of hydrocarbons for hydrogen generation. Applied Catalysis B: Environmental , 2005, 56(1-2): 95-110
doi: 10.1016/j.apcatb.2004.07.013
16 Ryu J H, Lee K Y, La H, Kim H J, Yang J, Jung H. Ni catalyst wash-coated on metal monolith with enhanced heat-transfer capability for steam reforming. Journal of Power Sources , 2007, 171(2): 499-505
doi: 10.1016/j.jpowsour.2007.05.107
17 Wu P Y, Li X J, Ji S F, Lang B, Habimana F, Li C Y. Steam reforming of methane to hydrogen over Ni-based metal monolith catalysts. Catalysis Today , 2009, 146(1-2): 82-86
doi: 10.1016/j.cattod.2009.01.031
18 Imhof A, Pine D J. Ordered macroporous materials by emulsion templating. Nature , 1997, 389(6654): 948-951
doi: 10.1038/40105
19 Imhof A, Pine D J. Uniform macroporous ceramics and plastics by emulsion templating. Advanced Materials , 1998, 10(9): 697-700
doi: 10.1002/(SICI)1521-4095(199806)10:9<697::AID-ADMA697>3.0.CO;2-M
20 Holland B T, Blanford C F, Stein A. Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids. Science , 1998, 281(5376): 538-540
doi: 10.1126/science.281.5376.538
21 Stein A, Schroden R C. Colloidal crystal templating of three-dimensionally ordered macroporous solids: materials for photonics and beyond. Current Opinion in Solid State and Materials Science , 2001, 5(6): 553-564
doi: 10.1016/S1359-0286(01)00022-5
22 Maekawa H, Esquena J, Bishop S, Solans C, Chmelka B F. Meso/macroporous inorganic oxide monoliths from polymer foams. Advanced Materials , 2003, 15(78): 591-596
doi: 10.1002/adma.200304248
23 Li F, Wang Z, Ergang N S, Fyfe C A, Stein A. Controlling the shape and alignment of mesopores by confinement in colloidal crystals: Designer pathways to silica monoliths with hierarchical porosity. Langmuir , 2007, 23(7): 3996-4004
doi: 10.1021/la062969s
24 Chen S L, Dong P, Xu K, Qi Y, Wang D. Large pore heavy oil processing catalysts prepared using colloidal particles as templates. Catalysis Today , 2007, 125(3-4): 143-148
doi: 10.1016/j.cattod.2007.02.026
25 Zhang Y, Zhao C Y, Liang H, Liu Y. Macroporous monolithic Pt/g-Al2O3 and K-Pt/g-Al2O3 catalysts used for preferential oxidation of CO. Catalysis Letters , 2009, 127(3-4): 339-347
doi: 10.1007/s10562-008-9686-z
26 Ren J, Du Z J, Zhang C, Li H Q. Macroporous titania monolith prepared via sol-gel process with polymer foam as the template. Chinese Journal of Chemistry , 2006, 24(7): 955-960
doi: 10.1002/cjoc.200690181
27 Freni S, Cavallaro S, Mondello N, Spadaro L, Frusteri F. Steam reforming of ethanol on Ni/MgO catalysts: H2 production for MCFC. Journal of Power Sources , 2002, 108(1-2): 53-57
doi: 10.1016/S0378-7753(02)00004-6
28 Liang H, Zhang Y, Liu Y. Monolithic macroporous catalysts—A new route for miniaturization of water-gas shift reactor. Journal of Natural Gas Chemistry , 2009, 18(4): 436-440
doi: 10.1016/S1003-9953(08)60138-3
29 He L, Berntsen H, Ferna’ndez E O, Walmsley J C, Blekkan E A, Chen D. pmid:Co-Ni catalysts derived from hydrotalcite-like materials for hydrogen production by ethanol steam reforming. Topics in Catalysis , 2009, 52(3): 206-217
doi: 10.1007/s11244-008-9157-1 pmid:Co-Ni catalysts derived from hydrotalcite-like materials for hydrogen production by ethanol steam reforming
30 Wang C G, Wang T J, Ma L L, Gao Y, Wu C Z. Steam reforming of biomass raw fuel gas over NiO-MgO solid solution cordierite monolith catalyst. Energy Conversion and Management , 2010, 51(3): 446-450
doi: 10.1016/j.enconman.2009.10.006
31 Hwang C P, Ye C Y. Platinum-oxide species formed by oxidation of platinum crystallites supported on alumina. Journal of Molecular Catalysis A Chemical , 1996, 112(2): 295-302
doi: 10.1016/1381-1169(96)00127-6
32 Yang J, Ryu J H, Lee K Y, Jung N J, Park J C, Chun D H, Kim H J, Yang J H, Lee H T, Cho I, Jung H. Combined pre-reformer/reformer system utilizing monolith catalysts for hydrogen production. International Journal of Hydrogen Energy , 2011, 36(15): 8850-8856
doi: 10.1016/j.ijhydene.2011.04.130
33 Coleman L J I, Epling W, Hudgins R R, Croset E. Ni/Mg-Al mixed oxide catalyst for the steam reforming of ethanol. Applied Catalysis A, General , 2009, 363(1-2): 52-63
doi: 10.1016/j.apcata.2009.04.032
34 Flytzani-Stephanopoulos M, Voecks G E, Charng T. Modelling of heat transfer in non-adiabatic monolith reactors and experimental comparisons of metal monoliths with packed beds. Chemical Engineering Science , 1986, 41(5): 1203-1212
doi: 10.1016/0009-2509(86)87093-2
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed