Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2013, Vol. 7 Issue (3): 279-288   https://doi.org/10.1007/s11705-013-1338-1
  RESEARCH ARTICLE 本期目录
Light olefins synthesis from С12 paraffins via oxychlorination processes
Light olefins synthesis from С12 paraffins via oxychlorination processes
Anton SHALYGIN, Evgenii PAUKSHTIS, Evgenii KOVALYOV, Bair BAL’ZHINIMAEV()
Boreskov Institute of Catalysis, Novosibirsk 630090, Russia
 全文: PDF(338 KB)   HTML
Abstract

A two-step process was employed to convert methane or ethane to light olefins via the formation of an intermediate monoalkyl halide. A novel K4RuOCl10/TiO2 catalyst was tested for the oxidative chlorination of methane and ethane. The catalyst had high selectivity for methyl and ethyl chlorides, 80% and 90%, respectively. During the oxychlorination of ethane at T≥250°C, the formation of ethylene as a reaction product along with ethyl chloride was observed. In situ Fourier transform infrared studies showed that the key intermediate for monoalkyl chloride and ethylene formation is the alkoxy group. The reaction mechanism for the oxidative chlorination of methane and ethane over the Ru-oxychloride catalyst was proposed. The novel fiber glass catalyst was also tested for the dehydrochlorination of alkyl chlorides to ethylene and propylene. Very high selectivities (up to 94%–98%) for ethylene and propylene formation as well as high stability were demonstrated.

Key wordsoxychlorination    methane    ethane    light olefins    ruthenium catalyst
收稿日期: 2012-12-01      出版日期: 2013-09-05
Corresponding Author(s): BAL’ZHINIMAEV Bair,Email:balzh@catalysis.ru   
 引用本文:   
. Light olefins synthesis from С12 paraffins via oxychlorination processes[J]. Frontiers of Chemical Science and Engineering, 2013, 7(3): 279-288.
Anton SHALYGIN, Evgenii PAUKSHTIS, Evgenii KOVALYOV, Bair BAL’ZHINIMAEV. Light olefins synthesis from С12 paraffins via oxychlorination processes. Front Chem Sci Eng, 2013, 7(3): 279-288.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-013-1338-1
https://academic.hep.com.cn/fcse/CN/Y2013/V7/I3/279
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
CatalystConversion/%Selectivity /%Stability
C2H4C3H6C4+
ZSM-510051085low
SAPO-3450102070low
WO3/ZrO240701030moderate
0.02%Pt-SO4/Zr-Si109280stable
0.02%Pt-SO4/Zr-Si259460stablea)
Tab.1  
1 Wang W, Jiang Y, Hunger M. Mechanistic investigations of the methanol-to-olefin (MTO) process on acidic zeolite catalysts by in situ solid-state NMR spectroscopy. Catalysis Today , 2006, 113(1-2): 102–114
doi: 10.1016/j.cattod.2005.11.015
2 .Yang G, Wei Y, Xu S, Chen J, Li J, Liu Z, Yu J R. Nanosize-enhanced lifetime of SAPO-34 catalysts in methanol-to-olefin reactions. J Phys Chem C , 2013, 117(16): 8214–8222
3 Vora B V, Marker T L, Barger P T, Nilsen H R, Kvisle S, Fuglerud T. Economic route for natural gas conversion to ethylene and propylene. Studies in Surface Science and Catalysis , 1997, 107: 87–98
doi: 10.1016/S0167-2991(97)80321-7
4 Wang C, Xu L, Wang Q. Review of directly producing light olefins via CO hydrogenation. Journal of Natural Gas Chemistry , 2003, 12(1): 10–16
5 Abelló D S, Montané D D. Exploring iron-based multifunctional catalysts for Fischer-Tropsch synthesis: A review. ChemSusChem , 2011, pmid:4(11): 1538–1556
doi: 10.1002/cssc.201100189 pmid:4(11):
6 Galvis H M T, Bitter J H, Khare C B, Ruitenbeek M, Dugulan A I, de Jong K P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science , 2012, 325(6070): 835–838
doi: 10.1126/science.1215614
7 Chen W, Fan Z, Pan X, Bao X. Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst. Journal of the American Chemical Society , 2008, 130(29): 9414–9419
doi: 10.1021/ja8008192
8 Olah G A, Gupta B, Farina M, Felberg J D, Ip W M, Husain A, Karpeles R, Lammertsma K, Melhotra A K, Trivedi N J. Selective Monohalogenation of methane over supported acid or platinum metal catalysts and hydrolysis of methyl halides over γ-alumina-supported metal oxide/hydroxide catalysts. A feasible path for the oxidative conversion of methane into methyl alcohol/dimethyl ether. Journal of the American Chemical Society , 1985, 107(24): 7097–7105
doi: 10.1021/ja00310a057
9 Olah G A, Renner R, Schilling P, Mo Y K. Antimony pentafluoride aluminum trichloride, and silver antimony hexafluoride catalyzed chlorination and chlorolysis of alkanes and cycloalkanes . Journal of the American Chemical Society , 1973, 95(23): 7686–7692
10 Jauman D, Su B L. Direct catalytic conversion of chloromethane to higher hydrocarbons over a series of ZSM-5 zeolites exchanged with alkali cations. JounalβofβMolecularβCatalysisA A , 2003, 197(1-2): 263–273
doi: 10.1016/S1381-1169(02)00622-2
11 Wei Y, Zhang D, Liu Z, Su B. Highly efficient catalytic conversion of chloromethane to light olefins over HSAPO-34 as studied by catalytic testing and in situ FTIR. Journal of Catalysis , 2006, 238(1): 46–57
doi: 10.1016/j.jcat.2005.11.021
12 Seki K. Development of RuO2/Rutile TiO2 catalyst for industrial HCl oxidation process. Catalysis Surveys from Asia , 2010, 14(3-4): 168–175
doi: 10.1007/s10563-010-9091-7
13 Taylor C E, Noceti R P, Schehl R R. Direct conversion of methane to liquid hydrocarbons through chlorocarbon intermediates. Studies in Surface Science and Catalysis , 1988, 36: 483–489
doi: 10.1016/S0167-2991(09)60542-5
14 Taylor C E. Conversion of substituted methanes over ZSM-catalyst. Studies in Surface Science and Catalysis , 2000, 130D: 3633–3638
15 Sun Y, Campbell S M, Lunsford J H, Lewis G E, Palke D, Tau L M. The catalytic conversion of methyl chloride to ethylene and propylene over phosphorus-modified Mg-ZSM-5 zeolites. Journal of Catalysis , 1993, 143(1):32–44
16 Zhang D, Wei Y, Xu L, Chang F, Liu Z, Meng S, Su B L, Liu Z. MgAPSO-34 molecular sieves with various Mg stoichiometries: Synthesis, characterization and catalytic behavior in the direct transformation of chloromethane into light olefins. Micro Meso Mater, 2008, 116(1-3): 684–692
17 Liu Z, Huang L, Li W S, Yang F, Au C T, Zhou X P. Higher hydrocarbons from methane condensation mediated by HBr. Journal of Molecular Catalysis , 2007, 273(1-2): 14–20
doi: 10.1016/j.molcata.2007.03.045
18 Lin R, Ding Y, Gong L, Dong W, Wang J, Zhang T. Efficient and stable silica-supported iron phosphate catalysts for oxidative bromination of methane. Journal of Catalysis , 2010, 272(1): 65–73
doi: 10.1016/j.jcat.2010.03.011
19 Degirmenci V, Yilmaz A, Uner D. Selective methane bromination over sulfated zirconia in SBA-15 catalysts. Catalysis Today , 2009, 142(1-2): 30–33
doi: 10.1016/j.cattod.2009.01.011
20 Peringer E, Podkolzin S G, Jones M E, Olindo R, Lercher J A. LaCl3-based catalysts for oxidative chlorination of CH4. Topics in Catalysis , 2006, 38(1-3): 211–220
doi: 10.1007/s11244-006-0085-7
21 Podkolzin S G, Stangland E E, Jones M E, Peringer E, Lercher J A. Methyl chloride production from methane over lantanium-based catalysts. Journal of the American Chemical Society , 2007, 129(9): 2569–2576
doi: 10.1021/ja066913w
22 Peringer E, Salzinger M, Hutt M, Lemonidou A A, Lercher J A. Modified lantanum catalysts for oxidative chlorination of methane. Topics in Catalysis , 2009, 52(9): 1220–1231
doi: 10.1007/s11244-009-9265-6
23 He J, Xu T, Wang Z, Zhang Q, Deng W, Wang Y. Tranformation of methane to propylene: A two-step reaction route catalyzed by modified CeO2 nanocrystals and zeolites. Angewandte Chemie International Edition , 2012, 51(10): 2438–2442
doi: 10.1002/anie.201104071
24 Xu T, Zhang Q, Song H, Wang Y. Fluoride-treated H-ZSM-5 as a highly selective and stable catalyst for the production of propylene from methyl halides. Journal of Catalysis , 2012, 295: 232–241
25 Bal’zhinimaev B S, Paukshtis E A, Lapina O B, Suknev A P, Kirillov V L, Mikenin P E, Zagoruiko A N. Glass fiber materials as a new generation of structured catalysts. Studies in Surface Science and Catalysis , 2010, 175: 43–50
doi: 10.1016/S0167-2991(10)75006-0
26 Crihan D, Knapp M, Zweidinger S, Lundgren E, Weststrate C J, Andersen J N, Seitsonen A P, Over H. Stable deacon process for HCl oxidation over RuO2. Angewandte Chemie International Edition , 2008, 120(11): 2161–2164
doi: 10.1002/ange.200705124
27 Hevia M A G, Amrute A P, Schmidt T, Pйrez-Ramнrez J. Transient mechanistic study of the gas-phase HCl oxidation to Cl2 on bulk and supported RuO2 catalysts. Journal of Catalysis , 2010, 276(1): 141–151
doi: 10.1016/j.jcat.2010.09.009
28 Borello E, Zecchina A, Morterra C. Journal of Physical Chemistry , 1967, 71(9): 2938–2945
doi: 10.1021/j100868a026 pmid:Infrared study of methanol adsorption on Aerosil. I. Chemisorption at room temperature
29 Murray D K, Chang J W, Haw J F. Conversion of methyl halides to hydrocarbons on basic zeolites: A discovery by in situ NMR. Journal of the American Chemical Society , 1993, 115(11): 4732–4741
doi: 10.1021/ja00064a037
30 Murray D K, Howard T, Goguen P W, Krawietz T R, Haw J F. Methyl halide reactions on multifunctional metal-exchanged zeolite catalysts. Journal of the American Chemical Society , 1994, 116(14): 6354–6360
doi: 10.1021/ja00093a040
31 Paes L W, Faria R B, Machuca-Herrera J O, Machado S P. The linear μ-oxo-bis[pentachlororuthenate(IV)] anion. Molecular orbital calculaions. Inorganica Chimica Acta , 2001, 321(1-2): 22–26
doi: 10.1016/S0020-1693(01)00503-5
32 Gazsi A, Koysa A, Bansagi T, Solymosi F. Adsorption and decomposition of ethanol on supported Au catalysts. Catalysis Today , 2011, 160(1): 70–78
doi: 10.1016/j.cattod.2010.05.007
33 Hauchecorne B, Tytgat T, Verbruggen S W, Hauchecorne D, Terrens D, Smits M, Vinken K, Lenaerts S. Photocatalytic degradation of ethylene: An FTIR in situ study under atmospheric conditions. App Catal B Environ , 2011, 105(1-2): 111–116
34 Singh M, Zhou N, Paul D K, Klabunde K J. IR spectral evidence of aldol condensation: Acetaldehyde adsorption over TiO2 surface. Journal of Catalysis , 2008, 260(2): 371–379
doi: 10.1016/j.jcat.2008.07.020
35 Opre Z, Ferri D, Krumeich F, Mallat T, Baiker A. Insight into the nature of active redox sites in Ru-containing hydroxyapatite by DRIFT spectroscopy. Journal of Catalysis , 2007, 251(1): 48–58
doi: 10.1016/j.jcat.2007.07.017
36 Wu W C, Chuang C C, Lin J L. Bonding geometry and reactivity of methoxy and ethoxy groups adsorbed on powdered TiO2. Journal of Physical Chemistry B , 2000, 104(36): 8719–8724
doi: 10.1021/jp0017184
37 Bhattacharyya K, Varma S, Tripathi A K, Bharadwaj S R, Tyagi A K. Mechanistic insight by in situ FTIR for the gas phase photo-oxidation of ethylene by V-doped titania and nano titania. Journal of Physical Chemistry B , 2009, 113(17): 5917–5928
doi: 10.1021/jp8103529
38 Bal’zhinimaev B S, Paukshtis E A, Vanag S V, Suknev A P, Zagoruiko A N. Glass Fiber Catalysts: Novel oxidation catalysts and catalytic technologies for environmental protection. Catalysis Today , 2010, 151(1-2): 195–199
doi: 10.1016/j.cattod.2010.01.011
39 Gulyaeva Yu K, Suknev A P, Paukshtis E A, Bal’zhinimaev B S. Gas phase nitridation of silicate fiber glass materials with ammonia. Journal of Non-Crystalline Solids , 2011, 357(18): 3338–3344
doi: 10.1016/j.jnoncrysol.2011.05.032
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed