Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2013, Vol. 7 Issue (3): 347-356   https://doi.org/10.1007/s11705-013-1347-0
  RESEARCH ARTICLE 本期目录
A logic-based controller for the mitigation of ventilation air methane in a catalytic flow reversal reactor
A logic-based controller for the mitigation of ventilation air methane in a catalytic flow reversal reactor
Zhikai LI1,2, Zhangfeng QIN1(), Yagang ZHANG1,2, Zhiwei WU1, Hui WANG1, Shuna LI1,2, Mei DONG1, Weibin FAN1, Jianguo WANG1()
1. State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China; 2. University of the Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(417 KB)   HTML
Abstract

The control system of a catalytic flow reversal reactor (CFRR) for the mitigation of ventilation air methane was investigated. A one-dimensional heterogeneous model with a logic-based controller was applied to simulate the CFRR. The simulation results indicated that the controller developed in this work performs well under normal conditions. Air dilution and auxiliary methane injection are effective to avoid the catalyst overheating and reaction extinction caused by prolonged rich and lean feed conditions, respectively. In contrast, the reactor is prone to lose control by adjusting the switching time solely. Air dilution exhibits the effects of two contradictory aspects on the operation of CFRR, i.e., cooling the bed and accumulating heat, though the former is in general more prominent. Lowering the reference temperature for flow reversal can decrease the bed temperature and benefit stable operation under rich methane feed condition.

Key wordsventilation air methane    reverse flow reactor    lean methane combustion    logic-based controller    mathematical modeling
收稿日期: 2012-11-27      出版日期: 2013-09-05
Corresponding Author(s): QIN Zhangfeng,Email:qzhf@sxicc.ac.cn; WANG Jianguo,Email:iccjgw@sxicc.ac.cn   
 引用本文:   
. A logic-based controller for the mitigation of ventilation air methane in a catalytic flow reversal reactor[J]. Frontiers of Chemical Science and Engineering, 2013, 7(3): 347-356.
Zhikai LI, Zhangfeng QIN, Yagang ZHANG, Zhiwei WU, Hui WANG, Shuna LI, Mei DONG, Weibin FAN, Jianguo WANG. A logic-based controller for the mitigation of ventilation air methane in a catalytic flow reversal reactor. Front Chem Sci Eng, 2013, 7(3): 347-356.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-013-1347-0
https://academic.hep.com.cn/fcse/CN/Y2013/V7/I3/347
1 Karakurt I, Aydin G, Aydiner K. Sources and mitigation of methane emissions by sectors: A critical review. Renewable Energy , 2012, 39(1): 40–48
doi: 10.1016/j.renene.2011.09.006
2 Su S, Beath A, Guo H, Mallett C. An assessment of mine methane mitigation and utilisation technologies. Progress in Energy and Combustion Science , 2005, 31(2): 123–170
doi: 10.1016/j.pecs.2004.11.001
3 Gosiewski K, Matros Y S, Warmuzinski K, Jaschik M, Tanczyk M. Homogeneous vs catalytic combustion of lean methane-air mixtures in reverse-flow reactors. Chemical Engineering Science , 2008, 63(20): 5010–5019
doi: 10.1016/j.ces.2007.09.013
4 Karakurt I, Aydin G, Aydiner K. Mine ventilation air methane as a sustainable energy source. Renewable & Sustainable Energy Reviews , 2011, 15(2): 1042–1049
doi: 10.1016/j.rser.2010.11.030
5 Warmuzinski K. Harnessing methane emissions from coal mining. Process Safety and Environmental Protection , 2008, 86(5): 315–320
doi: 10.1016/j.psep.2008.04.003
6 Trimm D. Catalytic combustion. Applied Catalysis A, General , 1983, 7(3): 249–282
doi: 10.1016/0166-9834(83)80027-X
7 Pio Forzatti G G. Catalytic combustion for the production of energy. Catalysis Today , 1999, 54(1): 165–180
doi: 10.1016/S0920-5861(99)00178-9
8 Zhang Y, Qin Z, Wang G, Zhu H, Dong M, Li S, Wu Z, Li Z, Wu Z, Zhang J, Hu T, Fan W, Wang J. Catalytic performance of MnOx-NiO composite oxide in lean methane combustion at low temperature. Applied Catalysis B: Environmental , 2013, 129(1): 172–181
doi: 10.1016/j.apcatb.2012.09.021
9 Wang B, Qin Z, Wang G, Wu Z, Fan W, Zhu H, Li S, Zhang Y, Li Z, Wang J. Catalytic combustion of lean methane at low temperature over palladium on a CoOx-SiO2 composite support. Catalysis Letters , 2013, 143(5): 411–417
doi: 10.1007/s10562-013-0988-4
10 Budhi Y W, Jaree A, Hoebink J H B J, Schouten J C. Simulation of reverse flow operation for manipulation of catalyst surface coverage in the selective oxidation of ammonia. Chemical Engineering Science , 2004, 59(19): 4125–4135
doi: 10.1016/j.ces.2004.04.040
11 Grigorios Kolios G E. Styrene synthesis in a reverse-flow reactor. Chemical Engineering Science , 1999, 54(13-14): 2637–2646
doi: 10.1016/S0009-2509(98)00444-8
12 Dillerop C, van den Berg H, van der Ham A G J. Novel syngas production techniques for GTL-FT synthesis of gasoline using reverse flow catalytic membrane reactors. Industrial & Engineering Chemistry Research , 2010, 49(24): 12529–12537
doi: 10.1021/ie1007568
13 Gl?ckler B, Kolios G, Eigenberger G. Analysis of a novel reverse-flow reactor concept for autothermal methane steam reforming. Chemical Engineering Science , 2003, 58(3-6): 593–601
doi: 10.1016/S0009-2509(02)00584-5
14 Matros Y S, Bunimovich G A. Reverse-flow operation in fixed bed catalytic reactors. Catalysis Reviews , 1996, 38(1): 1–68
doi: 10.1080/01614949608006453
15 Kolios G, Frauhammer J, Eigenberger G. Autothermal fixed-bed reactor concepts. Chemical Engineering Science , 2000, 55(24): 5945–5967
doi: 10.1016/S0009-2509(00)00183-4
16 Balaji S, Fuxman A, Lakshminarayanan S, Forbes J F, Hayes R E. Repetitive model predictive control of a reverse flow reactor. Chemical Engineering Science , 2007, 62(8): 2154–2167
doi: 10.1016/j.ces.2006.12.082
17 Devals C, Fuxman A, Bertrand F, Forbes J F, Perrier M, Hayes R E. Enhanced model predictive control of a catalytic flow reversal reactor. Canadian Journal of Chemical Engineering , 2009, 87(4): 620–631
doi: 10.1002/cjce.20194
18 Dufour P, Couenne F, Toure Y. Model predictive control of a catalytic reverse flow reactor. Control Systems Technology. IEEE Transactions on , 2003, 11(5): 705–714
19 Dufour P, Touré Y. Multivariable model predictive control of a catalytic reverse flow reactor. Computers & Chemical Engineering , 2004, 28(11): 2259–2270
doi: 10.1016/j.compchemeng.2004.04.006
20 Fuxman A M, Forbes J F, Hayes R E. Characteristics-based model predictive control of a catalytic flow reversal reactor. Canadian Journal of Chemical Engineering , 2007, 85(4): 424–432
doi: 10.1002/cjce.5450850405
21 Edouard D, Hammouri H, Zhou X G. Control of a reverse flow reactor for VOC combustion. Chemical Engineering Science , 2005, 60(6): 1661–1672
doi: 10.1016/j.ces.2004.10.020
22 Fuxman A M, Aksikas I, Forbes J F, Hayes R E. LQ-feedback control of a reverse flow reactor. Journal of Process Control , 2008, 18(7-8): 654–662
doi: 10.1016/j.jprocont.2007.12.005
23 Edouard D, Dufour P, Hammouri H. Observer based multivariable control of a catalytic reverse flow reactor: comparison between LQR and MPC approaches. Computers & Chemical Engineering , 2005, 29(4): 851–865
doi: 10.1016/j.compchemeng.2004.09.018
24 Fissore D, Barresi A A. Robust control of a reverse-flow reactor. Chemical Engineering Science , 2008, 63(7): 1901–1913
doi: 10.1016/j.ces.2007.12.018
25 Barresi A A, Vanni M. Control of catalytic combustors with periodical flow reversal. AIChE Journal. American Institute of Chemical Engineers , 2002, 48(3): 648–652
doi: 10.1002/aic.690480322
26 Hevia M A G, Ordó?ez S, Díez F V, Fissore D, Barresi A A. Design and testing of a control system for reverse-flow catalytic afterburners. AIChE Journal. American Institute of Chemical Engineers , 2005, 51(11): 3020–3027
doi: 10.1002/aic.10573
27 Balaji S, Lakshminarayanan S. Heat removal from reverse flow reactors used in methane combustion. Canadian Journal of Chemical Engineering , 2005, 83(4): 695–704
doi: 10.1002/cjce.5450830410
28 Mancusi E, Russo L, Brasiello A, Crescitelli S, di Bernardo M. Hybrid modeling and dynamics of a controlled reverse flow reactor. AIChE Journal. American Institute of Chemical Engineers , 2007, 53(8): 2084–2096
doi: 10.1002/aic.11216
29 Marín P, Ho W, Ordó?ez S, Díez F V. Demonstration of a control system for combustion of lean hydrocarbon emissions in a reverse flow reactor. Chemical Engineering Science , 2010, 65(1): 54–59
doi: 10.1016/j.ces.2009.02.003
30 Salomons S, Hayes R E, Poirier M, Sapoundjiev H. Modelling a reverse flow reactor for the catalytic combustion of fugitive methane emissions. Computers & Chemical Engineering , 2004, 28(9): 1599–1610
doi: 10.1016/j.compchemeng.2003.12.006
31 Aubé F, Sapoundjiev H. Mathematical model and numerical simulations of catalytic flow reversal reactors for industrial applications. Computers & Chemical Engineering , 2000, 24(12): 2623–2632
doi: 10.1016/S0098-1354(00)00618-9
32 Li Z, Qin Z, Zhang Y, Wu Z, Wang H, Li S, Shi R, Dong M, Fan W, Wang J. A control strategy of flow reversal with hot gas withdrawal for heat recovery and its application in mitigation and utilization of ventilation air methane in a reverse flow reactor. Chemical Engineering Journal , 2013, 228: 243–255
doi: 10.1016/j.cej.2013.04.105
33 Vortmeyer D, Jahnel W. Moving reaction zones in fixed bed reactors under the influence of various parameters. Chemical Engineering Science , 1972, 27(8): 1485–1496
doi: 10.1016/0009-2509(72)80041-1
34 Froment G F, Bischoff K B. Chemical Reactor Analysis and Design. New York: John Wiley & Sons, 1979, 476
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed