Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2013, Vol. 7 Issue (4): 401-407   https://doi.org/10.1007/s11705-013-1354-1
  RESEARCH ARTICLE 本期目录
Biodiesel production from waste frying oil in sub- and supercritical methanol on a zeolite Y solid acid catalyst
Biodiesel production from waste frying oil in sub- and supercritical methanol on a zeolite Y solid acid catalyst
Jorge MEDINA-VALTIERRA1, Jorge RAMIREZ-ORTIZ2()
1. Department of Chemical & Biochemical Engineering, Aguascalientes Institute of Technology, Aguascalientes, Ags. 20256, México; 2. Academic Unit of Chemical Sciences, Autonomous University of Zacatecas, Zac. 98160, México
 全文: PDF(299 KB)   HTML
Abstract

Waste frying oil (WFO) is a very important feedstock for obtaining biodiesel at low cost and using WFO in transesterification reactions to produce biodiesel helps eliminate local environmental problems. In this study biodiesel was produced from WFO in sub- and super-critical methanol on a zeolite Y solid acid catalyst. The procedure was optimized using a design of experiments by varying the methanol to WFO molar ratio, the reaction temperature, and the amount of catalyst. Typical biodiesel yields varied from 83 to nearly 100% with methyl esters content ranging from 1.41–1.66 mol·L-1 and typical dynamic viscosities of 22.1-8.2 cP. Gas chromatography was used to determine the molecular composition of the biodiesel. The reaction products contained over 82 wt-% methyl esters, 4.2 wt-% free acids, 13.5 wt-% monoglycerides, and 0.3 wt-% diglycerides. The transesterification of WFO with methanol around its critical temperature combined with a zeolite Y as an acid catalyst is an efficient approach for the production of biodiesel with acceptable yields.

Key wordsbiodiesel    methanol    critical temperature    waste frying oil    zeolite Y
收稿日期: 2013-05-08      出版日期: 2013-12-05
Corresponding Author(s): RAMIREZ-ORTIZ Jorge,Email:jramirez@uaz.edu.mx   
 引用本文:   
. Biodiesel production from waste frying oil in sub- and supercritical methanol on a zeolite Y solid acid catalyst[J]. Frontiers of Chemical Science and Engineering, 2013, 7(4): 401-407.
Jorge MEDINA-VALTIERRA, Jorge RAMIREZ-ORTIZ. Biodiesel production from waste frying oil in sub- and supercritical methanol on a zeolite Y solid acid catalyst. Front Chem Sci Eng, 2013, 7(4): 401-407.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-013-1354-1
https://academic.hep.com.cn/fcse/CN/Y2013/V7/I4/401
Operating variablesCoded symbolRange of levels
Low (1)Center (2)High (3)
Catalyst amount/gA0.10.20.3
Methanol/oil molar ratioB235
Reaction temperature /°CC220240260
Tab.1  
Zeolite Y (A) /g0.10.20.3
Methanol/WFO molar ratio (B)235235235
Reaction temperature (C) /°C220
Biodiesel yield /wt-%75.090.090.010093.010095.096.095.0
Viscosity /cP17.618.214.316.814.89.4015.210.59.40
FAME /mol·L-11.571.581.531.561.531.431.541.461.44
240
Biodiesel yield /wt-%82.590.010010096.010087.510095.0
Viscosity /cP22.19.598.1915.916.39.2711.411.910.5
FAME /mol·L-11.521.441.401.551.561.431.481.491.46
260
Biodiesel yield /wt-%95.010090.087.59310082.583.0100
Viscosity /cP10.516.510.58.879.3210.510.59.778.38
FAME /mol·L-11.461.661.421.431.431.461.461.451.41
Tab.2  
Fig.1  
Fig.2  
Fig.3  
Range/cm-1Functional groupAssignmentIntensity of WFOIntensity of biodiesel
1183C-C-OAsymmetric stretchingMediumMedium
1200C-C-(O)-CAsymmetric stretchingLowMedium
1700-1800C=OStretchingVery intenseIntense
2800-3000-CH2 and -CH3Symmetric and asymmetric stretchingIntenseVery intense
Tab.3  
1 Kulkarni M G, Dalai A K. Waste cooking oil-an economical source for biodiesel: A review. Industrial & Engineering Chemistry Research , 2006, 45(9): 2901-2913
doi: 10.1021/ie0510526
2 Enweremadu C C, Mbarawa M M. Technical aspects of production and analysis of biodiesel from used cooking oil: A review. Renewable & Sustainable Energy Reviews , 2009, 13(9): 2205-2224
doi: 10.1016/j.rser.2009.06.007
3 Philippaerts A, Goossens S, Vermandel W, Tromp M, Turner S, Geboers J, van Tendeloo G P, Jacobs A, Sels B F. Design of Ru-zeolites for hydrogen-free production of conjugated linoleic acids. ChemSusChem , 2011, 4(6): 757-767
doi: 10.1002/cssc.201100015
4 Jain S, Sharma M P, Rajvanshi S. Acid base catalyzed transesterification kinetics of waste cooking oil. Fuel Processing Technology , 2011, 92(1): 32-38
doi: 10.1016/j.fuproc.2010.08.017
5 Das S K, Bhunia M K, Sinha A K, Bhaumik A. Synthesis, characterization, and biofuel application of mesoporous zirconium oxophosphates. ACS Catalysis , 2011, 1: 493-401
doi: 10.1021/cs200005z
6 Olutoye M A, Lee S C, Hameed B H. Synthesis of fatty acid methyl ester from palmoil (Elaeis guineensis) with Ky(MgCa)2xO3 as heterogeneous catalyst. Bioresource Technology , 2011, 102(23): 10777-10783
doi: 10.1016/j.biortech.2011.09.033
7 Shu Q, Gao J, Nawaz Z, Liao Y, Wang D, Wang J. Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using a carbon-based solid acid sites. Applied Energy , 2010, 87(8): 2589-2596
doi: 10.1016/j.apenergy.2010.03.024
8 Zhang X, Li J, Chen Y, Wang J, Feng I, Wang X, Cao F. Heteropolyacid nanoreactor with double acid sites as a high efficient and reusable catalyst for the transesterification of waste cooking oil. Energy & Fuels , 2009, 23(9): 4640-4646
doi: 10.1021/ef900396a
9 Canilla C, Bonoura G, Rombi E, Arena F, Frusteri F. Highly effective MnCeOx catalysts for biodiesel production by transesterification of vegetable oils with methanol. Applied Catalysis A, General , 2010, 382(2): 158-166
doi: 10.1016/j.apcata.2010.04.031
10 Brito A, Borges M, Otero N. Zeolite Y as a heterogeneous catalyst in biodiesel fuel production from used vegetable oil. Energy & Fuels , 2007, 21(6): 3280-3283
doi: 10.1021/ef700455r
11 Wang R, Yang S, Yin S, Song B, Bhadury P S, Xue W, Tao S, Jia Z, Liu D, Gao L. Development of solid base catalyst X/Y/MgO/c-Al2O3 for optimization of preparation of biodiesel from Jatropha curcas L. seed oil. Frontiers of Chemical Engineering in China , 2008, 2(4): 468-472
doi: 10.1007/s11705-008-0074-4
12 Xue W, Zhou Y C, Song B A, Shi X, Wang J, Yin S T, Hu D Y, Jin L H, Yang S. Synthesis of biodiesel from Jatropha curcas L. seed oil using artificial zeolites loaded with CH3COOK as a heterogeneous catalyst. Natural Science , 2009, 1(01): 55-62
doi: 10.4236/ns.2009.11010
13 Ramírez-Ortiz J, Martinez M, Flores H. Metakaolinite as a catalyst for biodiesel production from waste cooking oil. Frontiers of Chemical Science and Engineering , 2012, 6(4): 403-409
doi: 10.1007/s11705-012-1224-2
14 Laosiripojana N, Kiatkittipong W, Assabumrungrat S. Synthesis of methyl esters from relevant palm products in near-critical methanol with modified-zirconia catalysts. Bioresource Technology , 2010, 101(21): 8416-8423
doi: 10.1016/j.biortech.2010.05.076
15 Sawangkeaw R, Bunyakiat K S, Ngamprasertsith S. Ngamprasertsith. A review of laboratory-scale research on lipid conversion to biodiesel with supercritical methanol (2001-2009). Journal of Supercritical Fluids , 2010, 55(1): 1-13
doi: 10.1016/j.supflu.2010.06.008
16 Saka S, Kusdiana D. Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel , 2001, 80(2): 225-231
doi: 10.1016/S0016-2361(00)00083-1
17 Du Z, Tang Z, Wang H, Zeng J, Chen Y, Min E. Research and development of a sub-critical methanol alcoholysis process for producing biodiesel using waste oils and fats. Chinese Journal of Catalysis , 2013, 34(1): 101-115
doi: 10.1016/S1872-2067(11)60490-7
18 Mahajan S, Konar S K, Boocock D G B. Determining the acid number of biodiesel. Journal of the American Oil Chemists' Society , 2006, 83(6): 567-570
doi: 10.1007/s11746-006-1241-8
19 Leung D Y C, Guo Y. Trans-esterification of neat and used frying oil: Optimization for biodiesel production. Fuel Processing Technology , 2006, 87(10): 883-890
doi: 10.1016/j.fuproc.2006.06.003
20 Plank C, Lorbeer E. Simultaneous determination of glycerol, and mono-, di- and triglycerides in vegetable oil methyl esters by capillary gas chromatography. Journal of Chromatography. A , 1995, 697(1-2): 461-468
doi: 10.1016/0021-9673(94)00867-9
21 Demirbas A. Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification. Energy Conversion and Management , 2009, 50(4): 923-927
doi: 10.1016/j.enconman.2008.12.023
22 Lotero E, Liu Y, Lopez D E, Suwannakarn K, Bruce D A, Goodwin J G. Synthesis of biodiesel via acid catalysis. Industrial & Engineering Chemistry Research , 2005, 44(14): 5353-5363
doi: 10.1021/ie049157g
23 Silverstein R M, Bassler G C, Morrill T C. Spectrometric Identification of Organic Compounds, 5th ed. New York: Wiley; 1991, 114-117
24 Mahamuni N N, Adewuyi Y G. Fourier transform infrared spectroscopy (FTIR) method to monitor soy biodiesel and soybean oil in transesterification reactions, petrodiesel-biodiesel blends, and blend adulteration with soy oil. Energy & Fuels , 2009, 23(7): 3773-3782
doi: 10.1021/ef900130m
25 Fl?res-Ferr?o M, Souza-Viera M, Panta-Pazos R E, Fachini D, Engel-Gerbase A, Marder L. Simultaneous determination of quality parameters of biodiesel/diesel blends using HATR-FTIR spectra and PLS, iPLS or siPLS regressions. Fuel , 2011, 90(2): 701-706
doi: 10.1016/j.fuel.2010.09.016
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed