Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2013, Vol. 7 Issue (4): 456-463   https://doi.org/10.1007/s11705-013-1357-y
  RESEARCH ARTICLE 本期目录
Effect of ligand chain length on hydrophobic charge induction chromatography revealed by molecular dynamics simulations
Effect of ligand chain length on hydrophobic charge induction chromatography revealed by molecular dynamics simulations
Lin ZHANG1,2, Yan SUN1,2()
1. Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; 2. Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
 全文: PDF(492 KB)   HTML
Abstract

Hydrophobic charge induction chromatography (HCIC) is a mixed-mode chromatography which is advantageous for high adsorption capacity and facile elution. The effect of the ligand chain length on protein behavior in HCIC was studied. A coarse-grain adsorbent pore model established in an earlier work was modified to construct adsorbents with different chain lengths, including one with shorter ligands (CL2) and one with longer ligands (CL4). The adsorption, desorption, and conformational transition of the proteins with CL2 and CL4 were examined using molecular dynamics simulations. The ligand chain length has a significant effect on both the probability and the irreversibility of the adsorption/desorption. Longer ligands reduced the energy barrier of adsorption, leading to stronger and more irreversible adsorption, as well as a little more unfolding of the protein. The simulation results elucidated the effect of the ligand chain length, which is beneficial for the rational design of adsorbents and parameter optimization for high-performance HCIC.

Key wordsadsorption    desorption    irreversibility    protein conformational transition    molecular dynamics simulation
收稿日期: 2013-08-02      出版日期: 2013-12-05
Corresponding Author(s): SUN Yan,Email:ysun@tju.edu.cn   
 引用本文:   
. Effect of ligand chain length on hydrophobic charge induction chromatography revealed by molecular dynamics simulations[J]. Frontiers of Chemical Science and Engineering, 2013, 7(4): 456-463.
Lin ZHANG, Yan SUN. Effect of ligand chain length on hydrophobic charge induction chromatography revealed by molecular dynamics simulations. Front Chem Sci Eng, 2013, 7(4): 456-463.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-013-1357-y
https://academic.hep.com.cn/fcse/CN/Y2013/V7/I4/456
Fig.1  
Fig.2  
Fig.3  
AdsorbentAdsorptionDesorption
PB /%YBPD /%YD
CL27.6 (18.0*)0.460 (0.298)83.8 (0.0)0.849 (0.000)
CL433.9 (34.7)0.778 (0.337)93.4 (9.5)0.975 (0.054)
Tab.1  
Fig.4  
Fig.5  
BStably adsorbed state of protein
CL2Adsorbent pore with shorter ligand containing two beads each
CL4Adsorbent pore with longer ligand containing four beads each
dThe minimum distance between the protein and ligand
DDesorbed state of protein
EInter-molecular interaction energy between protein and ligand
fMole fraction
MIntermediate state of protein
NNative state of protein
PBAdsorption probability
PDDesorption probability
RgRadius of gyration of protein
UUnfolded state of protein
YBAdsorption irreversibility
YDDesorption irreversibility
χStructural overlap function
Tab.2  
1 Burton S C, Harding D R. Hydrophobic charge induction chromatography: Salt independent protein adsorption and facile elution with aqueous buffers. Journal of Chromatography. A , 1998, 814(1-2): 71-81
doi: 10.1016/S0021-9673(98)00436-1
2 Schwartz W, Judd D, Wysocki M, Guerrier L, Birck-Wilson E, Boschetti E. Comparison of hydrophobic charge induction chromatography with affinity chromatography on protein A for harvest and purification of antibodies. Journal of Chromatography. A , 2001, 908(1-2): 251-263
doi: 10.1016/S0021-9673(00)01013-X
3 Dux M P, Barent R, Sinha J, Gouthro M, Swanson T, Barthuli A, Inan M, Ross J T, Smith L A, Smith T J, Webb R, Loveless B, Henderson I, Meagher M M. Purification and scale-up of a recombinant heavy chain fragment C of botulinum neurotoxin serotype E in Pichia pastoris GS115. Protein Expression and Purification , 2006, 45(2): 359-367
doi: 10.1016/j.pep.2005.08.015
4 Weatherly G T, Bouvier A, Lydiard D D, Chapline J, Henderson I, Schrimsher J L, Shepard S R. Initial purification of recombinant botulinum neurotoxin fragments for pharmaceutical production using hydrophobic charge induction chromatography. Journal of Chromatography. A , 2002, 952(1-2): 99-110
doi: 10.1016/S0021-9673(02)00074-2
5 Guerrier L, Girot P, Schwartz W, Boschetti E. New method for the selective capture of antibodies under physiolgical conditions. Bioseparation , 2000, 9(4): 211-221
doi: 10.1023/A:1008170226665
6 Guerrier L, Flayeux I, Boschetti E. A dual-mode approach to the selective separation of antibodies and their fragments. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences , 2001, 755(1-2): 37-46
doi: 10.1016/S0378-4347(00)00598-3
7 Boschetti E. Antibody separation by hydrophobic charge induction chromatography. Trends in Biotechnology , 2002, 20(8): 333-337
doi: 10.1016/S0167-7799(02)01980-7
8 Zhao G F, Sun Y. Displacement chromatography of proteins on hydrophobic charge induction adsorbent column. Journal of Chromatography. A , 2007, 1165(1-2): 109-115
doi: 10.1016/j.chroma.2007.07.067
9 Ghose S, Hubbard B, Cramer S M. Evaluation and comparison of alternatives to Protein A chromatography —Mimetic and hydrophobic charge induction chromatographic stationary phases. Journal of Chromatography. A , 2006, 1122(1-2): 144-152
doi: 10.1016/j.chroma.2006.04.083
10 Coulon D, Cabanne C, Fitton V, Noubhani A M, Saint-Christophe E, Santarelli X. Penicillin acylase purification with the aid of hydrophobic charge induction chromatography. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences , 2004, 808(1): 111-115
doi: 10.1016/j.jchromb.2004.03.025
11 Zhao G F, Peng G Y, Li F Q, Shi Q H, Sun Y. 5-Aminoindole, a new ligand for hydrophobic charge induction chromatography. Journal of Chromatography. A , 2008, 1211(1-2): 90-98
doi: 10.1016/j.chroma.2008.09.108
12 Lin D, Tong H, Wang H, Shao S, Yao S. Molecular mechanism of hydrophobic charge-induction chromatography: Interactions between the immobilized 4-mercaptoethyl-pyridine ligand and IgG. Journal of Chromatography. A , 2012, 1260: 143-153
doi: 10.1016/j.chroma.2012.08.080
13 Tong H, Lin D, Gao D, Yuan X, Yao S. Caprylate as the albumin-selective modifier to improve IgG purification with hydrophobic charge-induction chromatography. Journal of Chromatography. A , 2013, 1285: 88-96
doi: 10.1016/j.chroma.2013.02.023
14 Lu H, Lin D, Gao D, Yao S. Evaluation of immunoglobulin adsorption on the hydrophobic charge-induction resins with different ligand densities and pore sizes. Journal of Chromatography. A , 2013, 1278: 61-68
doi: 10.1016/j.chroma.2012.12.054
15 Lippa K A, Sander L C. Identification of isolated cavity features within molecular dynamics simulated chromatographic surfaces. Journal of Chromatography. A , 2006, 1128(1-2): 79-89
doi: 10.1016/j.chroma.2006.06.043
16 Sander L C, Lippa K A, Wise S A. Order and disorder in alkyl stationary phases. Analytical and Bioanalytical Chemistry , 2005, 382(3): 646-668
doi: 10.1007/s00216-005-3127-2
17 Lippa K A, Sander L C, Mountain R D. Molecular dynamics Simulations of alkylsilane stationary-phase order and disorder. 2. Effects of temperature and chain length. Analytical Chemistry , 2005, 77(24): 7862-7871
doi: 10.1021/ac051085v
18 Rafferty J L, Siepmann J I, Schure M R. The effects of chain length, embedded polar groups, pressure, and pore shape on structure and retention in reversed-phase liquid chromatography: Molecular-level insights from Monte Carlo simulations. Journal of Chromatography. A , 2009, 1216(12): 2320-2331
doi: 10.1016/j.chroma.2008.12.088
19 Braun J, Fouqueau A, Bemish R J, Meuwly M. Solvent structures of mixed water/acetonitrile mixtures at chromatographic interfaces from computer simulations. Physical Chemistry Chemical Physics , 2008, 10(32): 4765-4777
doi: 10.1039/b807492e
20 Fouqueau A, Meuwly M, Bemish R J. Adsorption of acridine orange at a C-8,C-18/Water/Acetonitrile interface. Journal of Physical Chemistry B , 2007, 111(34): 10208-10216
doi: 10.1021/jp071721o
21 Gritti F, Guiochon G. A chromatographic estimate of the degree of surface heterogeneity of reversed-phase liquid chromatography packing materials II-Endcapped monomeric C-18-bonded stationary phase. Journal of Chromatography. A , 2006, 1103(1): 57-68
doi: 10.1016/j.chroma.2005.10.051
22 Singh S, Wegmann J, Albert K, Muller K. Variable temperature FT-IR studies of n-alkyl modified silica gels. Journal of Physical Chemistry B , 2002, 106(4): 878-888
doi: 10.1021/jp012979w
23 Tan L C, Carr P W. Revisionist look at solvophobic driving forces in reversed-phase liquid chromatography: II. Partitioning vs adsorption mechanism in monomeric alkyl bonded phase supports. Journal of Chromatography. A , 1997, 775(1-2): 1-12
doi: 10.1016/S0021-9673(97)00228-8
24 Hennion M C, Picard C, Caude M. Influence of the number and length of alkyl chains on the chromatographic properteis of hyrdrocarbonaceous bonded phases. Journal of Chromatography. A , 1978, 166(1): 21-35
doi: 10.1016/S0021-9673(00)92246-5
25 Miyabe K, Guiochon G. Influence of the modification conditions of alkyl bonded ligands on the characteristics of reversed-phase liquid chromatography. Journal of Chromatography. A , 2000, 903(1-2): 1-12
doi: 10.1016/S0021-9673(00)00891-8
26 Lienqueo M E, Mahn A, Salgado J C, Asenjo J A. Current insights on protein behaviour in hydrophobic interaction chromatography. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences , 2007, 849(1-2): 53-68
doi: 10.1016/j.jchromb.2006.11.019
27 Er-el Z, Zaidenzaig Y, Shaltiel S. Hydrocarbon-coated Sepharoses. Use in the purification of glycogen phosphorylase. Biochemical and Biophysical Research Communications , 1972, 49(2): 383-390
doi: 10.1016/0006-291X(72)90422-6
28 Dias-Cabral A C, Ferreira A S, Phillips J, Queiroz J A, Pinto N G. The effects of ligand chain length, salt concentration and temperature on the adsorption of bovine serum albumin onto polypropyleneglycol-Sepharose. Biomedical Chromatography , 2005, 19(8): 606-616
doi: 10.1002/bmc.487
29 Lin F Y, Chen W Y, Ruaan R C, Huang H M. Microcalorimetric studies of interactions between proteins and hydrophobic ligands in hydrophobic interaction chromatography: Effects of ligand chain length, density and the amount of bound protein. Journal of Chromatography. A , 2000, 872(1-2): 37-47
doi: 10.1016/S0021-9673(99)01231-5
30 Busini V, Moiani D, Moscatelli D, Zamolo L, Cavallotti C. Investigation of the influence of spacer arm on the structural evolution of affinity ligands supported on agarose. Journal of Physical Chemistry B , 2006, 110(46): 23564-23577
doi: 10.1021/jp0622278
31 Salvalaglio M, Cavallotti C. Molecular modeling to rationalize ligand-support interactions in affinity chromatography. Journal of Separation Science , 2012, 35(1): 7-19
doi: 10.1002/jssc.201100595
32 Zhang L, Zhao G F, Sun Y. Molecular insight into protein conformational transition in hydrophobic charge induction chromatography: A molecular dynamics simulation. Journal of Physical Chemistry B , 2009, 113(19): 6873-6880
doi: 10.1021/jp809754k
33 Zhang L, Zhao G F, Sun Y. Effects of ligand density on hydrophobic charge induction chromatography: Molecular dynamics simulation. Journal of Physical Chemistry B , 2010, 114(6): 2203-2211
doi: 10.1021/jp903852c
34 Zhang L, Bai S, Sun Y. Molecular dynamics simulation of the effect of ligand homogeneity on protein behavior in hydrophobic charge induction chromatography. Journal of Molecular Graphics & Modelling , 2010, 28(8): 863-869
doi: 10.1016/j.jmgm.2010.03.006
35 Zhang L, Zhao G F, Sun Y. Molecular dynamics simulation and experimental validation of the effect of pH on protein desorption in hydrophobic charge induction chromatography. Molecular Simulation , 2010, 36(13): 1096-1103
doi: 10.1080/08927022.2010.506511
36 Zhao G F, Zhang L, Bai S, Sun Y. Analysis of hydrophobic charge induction displacement chromatography by visualization with confocal laser scanning microscopy. Separation and Purification Technology , 2011, 82: 138-147
doi: 10.1016/j.seppur.2011.09.002
37 Honeycutt J D, Thirumalai D. Metastability of the folded states of globular proteins. Proceedings of the National Academy of Sciences of the United States of America , 1990, 87(9): 3526-3529
doi: 10.1073/pnas.87.9.3526
38 Berendsen H J, Vanderspoel D, Vandrunen R. Gromacs—A message-passing parallel molecular-dynamics implementation. Computer Physics Communications , 1995, 91(1-3): 43-56
doi: 10.1016/0010-4655(95)00042-E
39 Lindahl E, Hess B. van S D. GROMACS 3.0: A package for molecular simulation and trajectory analysis. Journal of Molecular Modeling , 2001, 7(8): 306-317
40 Sayle R, Milnerwhite E. RASMOL—Biomolecular graphics for all. Trends in Biochemical Sciences , 1995, 20(9): 374-376
doi: 10.1016/S0968-0004(00)89080-5
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed